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1. Introduction

1.1 Description of Problem

Dynamic failure in bound particulate materials is a combination of physical processes

including grain and matrix deformation, intra-granular cracking, matrix cracking, and

inter-granular-matrix/binder cracking/debonding, and is influenced by global initial

boundary value problem (IBVP) conditions. Discovering how these processes occur by

experimental measurements is difficult because of their dynamic nature and the influence of

global boundary conditions (BCs). Typically, post-mortem microscopy observations are

made of fractured/fragmented/comminuted material (Kipp et al., 1993), or real-time

in-situ infrared-optical surface observations are conducted of the dynamic failure process

(Guduru et al., 2001). These observation techniques, however, miss the origins of dynamic

failure internally in the material. Under quasi-static loading conditions, non-destructive

high spatial resolution (a few microns) synchrotron micro-computed tomography can be

conducted (Fredrich et al., 2006)∗ to track three-dimensionally the internal grain-scale

fracture process leading to macro-cracks (though these cracks can propagate unstably).

Dynamic loading, however, can generate a significantly different microstructural response,

usually fragmented and comminuted material (Kipp et al., 1993). Global BCs, such as

lateral confinement on cylindrical compression specimens, also can influence the resulting

failure mode, generating in a glass ceramic composite axial splitting and fragmentation

when there is no confinement and shear fractures with confinement (Chen and

Ravichandran, 1997). Thus, we resort to physics-based modeling to help uncover these

origins dynamically.

Examples of bound particulate materials include, but are not limited to, the following:

polycrystalline ceramics (crystalline grains with amorphous grain boundary phases, figure

1(a)), metal matrix composites (metallic grains with bulk amorphous metallic binder, figure

1(b)), particulate energetic materials (explosive crystalline grains with polymeric binder,

figure 1(c)), asphalt pavement (stone/rubber aggregate with hardened binder, figure 1(d)),

mortar (sand grains with cement binder), conventional quasi-brittle concrete (stone

aggregate with cement binder), and sandstones (sand grains with clayey binder). Bound

particulate materials contain grains (quasi-brittle or ductile) bound by binder material

often called the “matrix.” The heterogeneous particulate nature of these materials governs

their mechanical behavior at the grain-to-macroscales, especially in IBVPs for which

localized deformation nucleates. Thus, grain-scale material model resolution is needed in

regions of localized deformation nucleation (e.g., at a macro-crack tip, or at the high shear

∗Such experimental techniques are not yet mature, but can provide meaningful insight into the origins of
‘static’ fracture, and thus could play an important role in the discovery of the origins of dynamic failure.
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Figure 1. (a) Microstructure of alumina, composed of grains bound by a glassy phase.
(b) Silicon carbide (SiC) reinforced 2080 aluminum metal matrix composite
(Chawla, 2004). The four black squares are indents to identify the region. (c)
Cracking in explosive HMX grains and at the grain-matrix interfaces (Baer,
2007). (d) Cracking in asphalt pavement.

strain rate interface region between a projectile and target material†). To predict dynamic

failure for realistic IBVPs, a modeling approach needs to account simultaneously for the

underlying grain-scale physics and macroscale continuum IBVP conditions.

Traditional single-scale continuum constitutive models have provided the basis for

understanding the dynamic failure of these materials for IBVPs on the macroscale

(Rajendran and Grove, 1996; Dienes et al., 2006; Johnson and Holmquist, 1999), but

cannot predict dynamic failure because they do not account explicitly for the material’s

particulate nature. Direct Numerical Simulation (DNS) directly represents the grain-scale

mechanical behavior under static (Caballero et al., 2006) and dynamic loading conditions

(Kraft et al., 2008; Kraft and Molinari, 2008b). Currently, DNS is the best approach to

understanding fundamentally dynamic material failure, but IT is deficient in the following

ways: (1) it is limited by current computing power (even massively parallel computing) to

a small representative volume element (RVE) of the material and (2) it usually must

assume unrealistic BCs on the RVE (e.g., periodic, or prescribed uniform traction or

†Both projectile and target material could be modeled with such grain-scale material model resolution
at their interface region where significant fracture and comminution occurs. We start by assuming the
projectile is a deformable solid continuum body without grain-scale resolution, and then extend to include
such resolution in the future.
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displacement). Thus, multiscale modeling techniques are needed to predict dynamic failure

in bound particulate materials.

Current multiscale approaches attempt to do this, but fall short by one or more of the

following limitations: (1) not providing proper BCs on the microstructural DNS region

(called the “unit cell” by Feyel and Chaboche (2000), extended to account for

discontinuities in Belytschko et al. (2008)); (2) homogenizing at the macroscale the

underlying microstructural response in the unit cell and thus not maintaining a

computational “open window” to model microstructurally dynamic failure‡; and (3) not

making these methods adaptive, i.e., moving a computational “open window” with

grain-scale model resolution over regions experiencing dynamic failure.

Feyel and Chaboche (2000) and Belytschko et al. (2008) recognized the complexities and

limitations of unit cell methods as they are currently formulated, implemented, and applied.

Feyel (2003) stated that, in addition to the periodicity assumption for the microstructure

(impossible to model fracture), “... real structures have edges, either external or internal

ones (in case of a multimaterial structure). In the present FE2 framework, nothing has

been done to treat such effects. As a consequence, one cannot expect a good solution near

edges. This is clearly a weak point of the approach ...” In fact, for a non-periodic

heterogeneous microstructure found in bound particulate materials, we should not expect

predictive results for modeling nucleation of fracture anywhere in the unit cell.

Belytschko et al. (2008) introduced discontinuities into Feyel and Chaboche’s (2000) unit

cell (calling it a “perforated unit cell”) and relaxed the periodicity assumption to model

fracture nucleation, while up-scaling the effects of unit cell discontinuities to the macroscale

to obtain global cracks embedded in the finite element (FE) solution (using the extended

FE method). BCs on the unit cell are an issue, as well as the interaction of adjacent unit

cells. As noted in Belytschko et al. (2008), if regular displacement BCs (i.e., no jumps) are

applied to unit cells that are fracturing, then the fracture is constrained non-physically.

Belytschko et al. (2008) proposed to address this issue by solving iteratively for

displacement BCs by applying a traction instead. What traction to apply is still an

unknown and can be provided by the coarse-scale FE solution. Belytschko et al. (2008)

stated that “... the application of boundary conditions on the unit cell and information

transfer to/from the unit cell pose several difficulties ... When the unit cell localizes,

prescribed linear displacements as given in the analysis are not compatible with the

discontinuities ... The effects of boundaries and adjacent discontinuities are not reflected in

the method.”

‡This is a problem especially for modeling fragmentation and comminution microstructurally.
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1.2 Proposed Approach

A finite strain micromorphic plasticity model framework (Regueiro, 2010b) is applied to

formulate a simple pressure-sensitive plasticity model to account for the underlying

microstructural mechanical response in bound particulate materials (pressure-sensitive

heterogeneous materials). Linear isotropic elasticity and nonassociative Drucker-Prager

plasticity with cohesion hardening/softening are assumed for the constitutive equations

(Regueiro, 2009). Micromorphic continuum mechanics is used in the sense of Eringen

(1999). This was found to be one of the more general higher order continuum mechanics

frameworks for accounting for underlying microstructural mechanical response. Until this

work, however, the finite strain formulation based on multiplicative decomposition of the

deformation gradient F and microdeformation tensor χ has not been presented in the

literature with sufficient account of the reduced dissipation inequality and conjugate plastic

power terms to dictate the plastic evolution equation forms. We provide such details in this

report.

To illustrate the application of the micromorphic plasticity model to the problem of

interest, we refer figure 2, which illustrates a concurrent multiscale modeling framework for

bound particulate materials (target) impacted by a deformable solid (projectile). The

higher order continuum micromorphic plasticity model is used in the overlap region

between a continuum FE and DNS representation of the particulate material. The

additional degrees of freedom provided by the micromorphic model (microshear,

micro-dilation/compaction, and microrotation) allow the overlap region to be placed closer

to the region of interest, such as at a projectile-target interface. Further, from this

interface region, standard continuum mechanics and constitutive models can be used.

1.3 Focus of Report

Regarding the approach described in section 1.2, this report primarily on the nonlinear

micromorphic continuum mechanics and finite strain elastoplasticity constitutive model

tasks. How this generalized continuum model couples via an overlapping region to the DNS

region (figure 2) is described in sections 2.4 and 2.5.

The discrete element (DE) and/or FE representation of the particulate microstructure is

intentionally not shown so as not to clutter the drawing of the microstructure. The grains

(binder matrix not shown) of the microstructure are “meshed” using DEs and/or FEs with

cohesive surface elements (CSEs). The open circles denote continuum FE nodes that have

prescribed degrees of freedom (DOFs) D̂ based on the underlying grain-scale response,

while the solid circles denote continuum FE nodes that have free DOFs D governed by the

micromorphic continuum model. We intentionally leave an “open window” (i.e., DNS) on

the particulate microstructural mesh in order to model dynamic failure. If the continuum

4



Figure 2. Two-dimensional illustration of the concurrent computational multiscale mod-
eling approach in the contact interface region between a bound particulate ma-
terial (e.g., ceramic target) and deformable solid body (e.g., refractory metal
projectile).

mesh overlays the whole particulate microstructural region, as in Klein and Zimmerman

(2006) for atomistic-continuum coupling, then the continuum FEs would eventually become

too deformed by following the microstructural motion during fragmentation. The

blue-dashed box at the bottom-center of the illustration is a micromorphic continuum FE

region that can be converted to a DNS region for adaptive high-fidelity material modeling

as the projectile penetrates the target.

An outline of the report is as follows: section 2.1 summarizes the statement of work (SOW)

and the tasks, 2.2 presents the formulation of the nonlinear (finite deformation)

micromorphic continuum mechanics balance equations, sedction 2.3 presents the finite

strain elastoplasticity modeling framework based on a multiplicative decomposition of the

deformation gradient and microdeformation tensor, sections 2.4 and 2.5 describe how the

micromorphic continuum mechanics fits into a multiscale modeling approach, section 3

summarizes the results, and section 4 provides the conclusions and future work.

1.4 Notation

Cartesian coordinates are assumed for easier presentation of concepts and also in order to

define a Lagrangian elastic strain measure Ēe in the intermediate configuration B̄,
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assuming a multiplicative decomposition of the deformation gradient F and

microdeformation tensor χ into elastic and plastic parts (section 2.3.1). See Regueiro

(2010) for more details regarding finite strain micromorphic elastoplasticity in general

curvilinear coordinates, and also Eringen (1962) for nonlinear continuum mechanics in

general curvilinear coordinates and Clayton et al. (2004, 2005) for nonlinear crystal

elastoplasticity in general curvilinear coordinates.

Index notation is used so as to be as clear as possible with regard to details of the

formulation. Cartesian coordinates are assumed, so all indices are subscripts, and spatial

partial derivative is the same as covariant derivative (Eringen, 1962). Some symbolic/direct

notation is also given, such that (ab)ik = aijbjk, (a⊗ b)ijkl = aijbkl, (a ⊙ c)ijk = aimcjmk.

Boldface denotes a tensor or vector, where its index notation is given. Generally, variables

in uppercase letters and no overbar live in the reference configuration B0 (such as the

reference differential volume dV ), variables in lowercase live in the current configuration B
(such as the current differential volume dv), and variables in uppercase with overbar live in

the intermediate configuration B̄ (such as the intermediate differential volume dV̄ ). The

same applies to their indices, such that a differential line segment in the current

configuration dxi is related to a differential line segment in the reference configuration dXI

through the deformation gradient: dxi = FiIdXI (Einstein’s summation convention

assumed [see Eringen, 1962; Holzapfel, 2000]). In addition, the multiplicative

decomposition of the deformation gradient is written as FiI = F e
iĪ
F p

ĪI
(F = FeFp), where

superscripts e and p denote elastic and plastic parts, respectively. Subscripts (•),i (•),Ī and

(•),I imply spatial partial derivatives in the current, intermediate, and reference

configurations, respectively. A superscript prime symbol (•)′ denotes a variable associated

with the microelement for micromorphic continuum mechanics. Superposed dot
˙(�) = D(�)/Dt denotes material time derivative. The symbol

def
= implies a definition.

2. Technical Discussion

2.1 Statement of Work (SOW) and Specific Tasks

Bound particulate materials are commonly found in industrial products, construction

materials, and nature (e.g., geological materials). They include polycrystalline ceramics

(e.g., crystalline grains with amorphous grain boundary phases), energetic materials (high

explosives and solid rocket propellant), hot asphalt, asphalt pavement (after asphalt has

cured), mortar, conventional quasi-brittle concrete, ductile fiber composite concretes, and

sandstones, for instance. Bound particulate materials contain particles§ (quasi-brittle or

ductile) bound by binder material often called the “matrix.”

§We use “particle” and “grain” interchangeably.
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The heterogeneous nature of bound particulate materials governs its mechanical behavior

at the particle- to continuum-scales. The particle-scale is denoted as the scale at which

particle-matrix mechanical behavior is dominant, thus necessitating that particles and

matrix material be resolved explicitly (i.e., meshed directly in a numerical model),

accounting for their interfaces and differences in material properties. Currently, there is no

approach enabling prediction of initiation and propagation of dynamic fracture in bound

particulate materials—for example, polycrystalline ceramics, particulate energetic

materials, mortar, and sandstone—accounting for their underlying particulate

microstructure across multiple length-scales concurrently. Traditional continuum methods

have provided the basis for understanding the dynamic fracture of these materials, but

cannot predict the initiation of dynamic fracture without accounting for the material’s

particulate nature. DNS of deformation, intra-particle cracking, and

inter-particle-matrix/binder debonding at the particle-scale is limited by current

computing power (even massively parallel computing) to a small RVE of the material, and

usually must assume overly-restrictive BCs on the RVE (e.g., fixed normal displacement).

Multiscale modeling techniques are clearly needed to accurately capture the response of

bound particulate materials in a way accounting simultaneously for effects of the

microstructure at the particle-scale and BCs applied to the engineering structure of

interest, at the continuum-scale. The services of a scientist or engineer are required to

develop the mathematical theory and numerical methodology for multiscale modeling of

bound particulate materials of interest to the U.S. Army Research Laboratory (ARL).

The overall objective of the proposed research is to develop a concurrent multiscale

computational modeling approach that couples regions of continuum deformation to

regions of particle-matrix deformation, cracking, and debonding, while bridging the

particle- to continuum-scale mechanics to allow numerical adaptivity in modeling initiation

of dynamic fracture and degradation in bound particulate materials.

For computational efficiency, the solicited research use DNSs only in the spatial regions of

interest, such as the initiation site of a crack and its tip during propagation, and uses a

micromorphic continuum approach in the overlap and adjacent regions to provide proper

BCs on the DNS region, as well as an overlay continuum to which to project the underlying

particle-scale mechanical response (stress, internal state variables [ISVs]). The

micromorphic continuum constitutive model accounts for the inherent length-scale of

damaged fracture zone at the particle-scale, and thus includes the kinematics to enable the

proper coupling with the fractured DNS particle region. Outside of the DNS region, a

micromorphic extension of existing continuum model(s), with the particular model(s) to be

determined based on ARL needs, of material behavior is used.

This SOW calls for development of the formulation and finite element implementation of a

7



finite strain micromorphic inelastic constitutive model to bridge particle-scale mechanics to

the continuum-scale. The desired result is formulation of a model that enables more

complete understanding of the role of microstructure-scale physics on the

thermomechanical properties and performance of heterogeneous materials of interest to

ARL. These materials could include, but are not limited to, the following: ceramic

materials, energetic materials, geological materials, and urban structural materials.

2.1.1 Specific Tasks

Specific tasks, and summary of what was accomplished for each task.

1. Investigate and assess specific needs of ARL researchers with regards to multiscale

modeling of heterogeneous particulate materials. Determine, following discussion with

ARL materials researchers, the desired classical continuum constitutive model to be

reformulated as a micromorphic continuum constitutive model and used in the region

outside and overlapping partially the DNS window, for material(s) of interest to

ARL. For example, polycrystalline ceramics models include those of Johnson and

Holmquist (1999) or Rajendran and Grove (1996) and energetic materials include

those following Dienes et al. (2006). A finite strain Drucker-Prager pressure-sensitive

elastoplasticity model [Regueiro, 2009] was selected as a simple model approximation

to start, with future extension to the more sophisticated constitutive model forms

mentioned in the task 1. This model is presented in section 2.3.3.

2. Formulate theory and numerical algorithms for a finite strain micromorphic inelastic

constitutive model to bridge particle-scale mechanics to the continuum-scale based on

the decided constitutive equations from task 1.

See the summary for task 1.

3. Initiate finite element implementation of the formulated finite strain micromorphic

inelastic constitutive model in a continuum mechanics code.

The finite element implementation has been initiated in the password-protected

version of Tahoe tahoe.colorado.edu, where the open source version is available at

tahoe.cvs. sourceforge.net. This report focuses on the theory; while details of the

finite element implementation and numerical examples will follow in journal articles

and a future report.

4. Interact with ARL researchers in order to improve mutual understanding (i.e.,

understanding of both principal investigators [PIs] and of ARL) with regards to

dynamic fracture and material degradation in bound particulate materials and

associated numerical modeling techniques.

8



We are continuing to interact with ARL researchers regarding their needs for this

research problem.

5. Formulate an algorithm to couple finite strain micromorphic continuum finite

elements to DNS finite elements of bound particulate material through an overlapping

region.

The formulated algorithm is presented in section 2.5.

6. Initiate implementation of coupling algorithm in task 5 using FE code Tahoe (both for

micromorphic continuum and DNS). Future extension can be made for coupling

micromorphic model (Tahoe) to DNS model (ARL or other FE, or particle/meshfree,

code).

The coupling algorithm has been initiated for a finite element and discrete element

coupling. Extension to other DNS models of the grain-scale response is part of future

work (see section 2.5).

2.2 Nonlinear Micromorphic Continuum Mechanics

2.2.1 Kinematics

Figure 3 illustrates the mapping of the macroelement and microelement in the reference

configuration to the current configuration through the deformation gradient F and

microdeformation tensor χ. The macroelement continuum point is denoted by P (X,Ξ) and

p(x, ξ, t) in the reference and current configurations, respectively, with centroid C and c.

The microelement continuum point centroid is denoted by C ′ and c′ in the reference and

current configurations, respectively. The microelement is denoted by an assembly of

particles, but in general represents a grain/particle/fiber microstructural sub-volume of the

heterogeneous material. The relative position vector of the microelement centroid with

respect to the macroelement centroid is denoted by Ξ and ξ(X,Ξ, t) in the reference and

current configurations, respectively, such that the microelement centroid position vectors

are written as (figure 3) (Eringen and Suhubi, 1964; Eringen, 1999)

X ′
K = XK + ΞK , x′k = xk(X, t) + ξk(X,Ξ, t) (1)

Eringen and Suihubi (1964) assumed that for sufficiently small lengths ‖Ξ‖ ≪ 1 ( ‖ • ‖ is

the L2 norm), ξ is linearly related to Ξ through the microdeformation tensor χ, such that

ξk(X,Ξ, t) = χkK(X, t)ΞK (2)
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Figure 3. Map from reference B0 to current configuration B accounting for relative posi-
tion Ξ, ξ of microelement centroid C ′, c′ with respect to centroid of macroele-
ment C, c. F and χ can load and unload independently (although coupled
through constitutive equations and balance equations), and thus the addi-
tional current configuration is shown.

where then the spatial position vector of the microelement centroid is written as

x′k = xk(X, t) + χkK(X, t)ΞK (3)

This is equivalent to assuming an affine, or homogeneous, deformation of the macroelement

differential volume dV (but not the body B; i.e., the continuum body B is expected to

experience heterogeneous deformation because of χ, even if BCs are uniform). It also

simplifies considerably the formulation of the micromorphic continuum balance equations

as presented in (Eringen, 1964; Eringen, 1999). This microdeformation χ is analogous to

the small strain microdeformation tensor ψ in Mindlin (1964), physically described in his

figure 1. Eringen (1968) also provides a physical interpretation of χ generally, but then

simplies for the micropolar case. For example, χ can be interpreted as calculated from a

microdisplacement gradient tensor Φ as χ = 1 + Φ, where Φ is not actually calculated from

a microdisplacement vector u′, but a u′ can be calculated once Φ is known (see equation

265). The microelement spatial velocity vector (holding X and Ξ fixed) is then written as
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v′k = ẋ′k = ẋk + ξ̇k = vk + νklξl (4)

where ξ̇k = χ̇kKΞK = χ̇kKχ
−1
Klξl = νklξl, vk is the macroelement spatial velocity vector,

νkl = χ̇kKχ
−1
Kl (ν = χ̇χ−1) the microgyration tensor, similar in form to the velocity gradient

vk,l = ḞkKF
−1
Kl (ℓ = ḞF−1).

Now we take the partial spatial derivative of (equation 3) with respect to the reference

microelement position vector X ′
K , to arrive at an expression for the microelement

deformation gradient F ′
kK as (see appendix A)

F ′
kK = FkK(X, t) +

∂χkL(X, t)

∂XK

ΞL

+

(
χkA(X, t) − FkA(X, t) − ∂χkM (X, t)

∂XA

ΞM

)
∂ΞA
∂XK

(5)

where the deformation gradient of the macroelement is FkK = ∂xk(X, t)/∂XK . The

microelement deformation gradient F ′
kK maps microelement differential line segments

dx′k = F ′
kKdX

′
K and volumes dv′ = J ′dV ′, where J ′ = detF′ is the microelement Jacobian

of deformation. This is presented for generality of mapping stresses between B0 and B, B0

and B̄, B̄ and B, but will not be used explicitly in the constitutive equations in section

2.3.3.

2.2.2 Micromorphic Balance Equations and Clausius-Duhem Inequality

Using the spatial integral-averaging approach in Eringen and Suhubi (1964), we can derive

the balance equations and Clausius-Duhem inequality summarized in equation 57. The

rationale of this integral-averaging approach over dv and B in the current configuration is

to assume the classical balance equations in the microelement differential volume dv′ must

hold over integrated macroelement differential volume dv, in turn integrated over the

current configuration of the body in B. This approach is applied repeatedly to derive the

micromorphic balance equations in equation 57.

Balance of mass: The microelement mass m′ over dv can be expressed as

m′ =

∫

dv

ρ′dv′ =

∫

dV

ρ′0dV
′ (6)

where ρ′0 = ρ′J ′, J ′ = detF′. Then, the conservation of microelement mass m′ is

11



Dm′

Dt
= 0 (7)

=
D

Dt

∫

dv

ρ′dv′ =
D

Dt

∫

dV

ρ′J ′dV ′

=

∫

dV

(
Dρ′

Dt
J ′ + ρ′

DJ ′

Dt

)
dV ′

=

∫

dv

(
Dρ′

Dt
+ ρ′

∂v′l
∂x′l

)
dv′ = 0

Thus, the pointwise (localized) balance of mass over dv is

Dρ′

Dt
+ ρ′

∂v′l
∂x′l

= 0 (8)

Now, consider the balance of mass of solid over the whole body B. We start with the

integral-average definition of mass density:

ρdv
def
=

∫

dv

ρ′dv′ (9)

The total mass m of body B is expressed as

m =

∫

B

ρdv =

∫

B

[∫

dv

ρ′dv′
]

=

∫

B0

[∫

dV

ρ′J ′dV ′

]
(10)

Then, for conservation of mass over the body B, we have

Dm

Dt
=

∫

B0

[∫

dV

D(ρ′J ′)

Dt
dV ′

]

=

∫

B



∫

dv



Dρ′

Dt
+ ρ′

∂v′l
∂x′l︸ ︷︷ ︸

=0


 dv′


 = 0 (11)

Then, the balance of mass in B leads to the standard result
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Dm

Dt
=

D

Dt

∫

B

ρdv = 0

=

∫

B0

D(ρJ)

Dt
dV

=

∫

B

(
Dρ

Dt
+ ρ

∂vl
∂xl

)
dv = 0 (12)

Localizing the integral, we have the pointwise satisfaction of balance of mass for a single

constituent (in this case, solid) material:

Dρ

Dt
+ ρ

∂vl
∂xl

= 0 (13)

Balance of microinertia:

Given that ΞK is the position of microelement dV ′ centroid C ′ in the reference

configuration with respect to the mass center of the macroelement dV centroid C (see

figure 3), we have the result

∫

dV

ρ′0ΞKdV
′ = 0 (14)

This can be thought of as the first mass moment being zero because of the definition ΞK as

the “relative” position of C ′ with respect to C (the mass center of dV ) (Eringen, 1999).

The second mass moment is not zero, and in the process a microinertia IKL in B0 is defined

as

ρ0IKLdV
def
=

∫

dV

ρ′0ΞKΞLdV
′ (15)

Likewise, a microinertia ikl in B is defined as
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ρikldv
def
=

∫

dv

ρ′ξkξldv
′ (16)

=

∫

dv

ρ′χkKΞKχlLΞLdv
′

= χkKχlL

∫

dv

ρ′0ΞKΞLdV
′

= χkKχlLρ0IKLdV = χkKχlLρIKLdv

=⇒ IKL = χ−1
Kkχ

−1
Ll ikl (17)

The balance of microinertia in B0 is then defined as

D

Dt

∫

B0

ρ0IKLdV =

∫

B0

ρ0
DIKL
Dt

dV = 0 (18)

DIKL
Dt

= χ−1
Kkχ

−1
Ll

(
Dikl
Dt

− νkaial − νlaiak

)

=

∫

B

ρχ−1
Kkχ

−1
Ll

(
Dikl
Dt

− νkaial − νlaiak

)
dv = 0

Localizing the integral, and factoring out ρχ−1
Kkχ

−1
Ll , the pointwise balance of microinertia in

B is

Dikl
Dt

− νkaial − νlaiak = 0 (19)

Balance of linear momentum and the first moment of momentum: To derive the

micromorphic balance of linear momentum and the first moment of momentum (different

than angular momentum), Eringen and Suhubi (1964) followed a weighted residual

approach, where the point of departure is that balance of linear and angular momentum in

the microelement dv′ over dv are satisfied:

σ′
lk,l + ρ′(f ′

k − a′k) = 0 (20)

σ′
lk = σ′

kl (21)

where microelement Cauchy stress σ′ is symmetric (macroelement Cauchy stress σ will be

shown to be symmetric). Using a smooth weighting function φ′ (to be defined for three
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cases), the weighted average over B of the balance of linear momentum on dv is expressed

as

∫

B

{∫

dv

φ′
[
σ′
lk,l + ρ′(f ′

k − a′k)
]
dv′
}

= 0 (22)

where (•)′,l = ∂(•)′/∂x′l. Applying the chain rule (φ′σ′
lk),l = φ′

,lσ
′
lk + φ′σ′

lk,l, we can rewrite

equation 22 as

∫

B

{∫

dv

[
(φ′σ′

lk),l − φ′
,lσ

′
lk + ρ′φ′(f ′

k − a′k)
]
dv′
}

= 0 (23)

∫

∂B

{∫

da

(φ′σ′
lk)n

′
lda

′

}
+

∫

B

{∫

dv

[
−φ′

,lσ
′
lk + ρ′φ′(f ′

k − a′k)
]
dv′
}

= 0 (24)

We consider three cases for the weighting function φ′ leading to three separate

micromorphic balance equations on B:

1. φ′ = 1, balance of linear momentum

2. φ′ = enmkx
′
m, balance of angular momentum, where enmk is the permutation tensor

(Holzapfel, 2000)

3. φ′ = x′m, balance of the first moment of momentum

Substituting these three choices for φ′ into equation 24, we can derive the respective

micromorphic balance equations on B:

1. φ′ = 1, balance of linear momentum:

∫

∂B

{∫

da

σ′
lkn

′
lda

′

}
+

∫

B

{∫

dv

[ρ′(f ′
k − a′k)] dv

′

}
= 0 (25)

The spatial-averaged definitions of unsymmetric Cauchy stress σlk, body force fk, and

acceleration ak are used to derive the micromorphic balance of linear momentum:

σlknlda
def
=

∫

da

σ′
lkn

′
lda

′ (26)

ρfkdv
def
=

∫

dv

ρ′f ′
kdv

′ (27)

ρakdv
def
=

∫

dv

ρ′a′kdv
′ (28)

15



From equation 25 and equations 26–28, there results

∫

∂B

σlknlda+

∫

B

ρ(fk − ak)dv = 0 (29)
∫

B

[σlk,l + ρ(fk − ak)] dv = 0 (30)

Localizing the integral, we have the pointwise expression for micromorphic balance of

linear momentum

σlk,l + ρ(fk − ak) = 0 (31)

Note that the macroscopic Cauchy stress σlk is unsymmetric.

2. φ′ = enmkx
′
m, x′m = xm + ξm, balance of angular momentum:

∫

∂B

{∫

da

enmk(x
′
mσ

′
lk)n

′
lda

′

}
+

∫

B

{∫

dv

enmk
[
−x′m,lσ′

lk + ρ′x′m(f ′
k − a′k)

]
dv′
}

= 0

∫

∂B

{∫

da

enmk((xm + ξm)σ′
lk)n

′
lda

′

}

+

∫

B

{∫

dv

enmk [−σ′
mk + ρ′(xm + ξm)(f ′

k − a′k)] dv
′

}
= 0 (32)

where x′m,l = ∂x′m/∂x
′
l = δml. We analyze the terms in equation 32, using

a′k = ak + ξ̈k and ξ̈k = (ν̇kc + νkbνbc)ξc, such that

∫

∂B

{∫

da

enmk((xm + ξm)σ′
lk)n

′
lda

′

}
=

∫

∂B

enmkxm

∫

da

σ′
lkn

′
lda

′

︸ ︷︷ ︸
def
= σlknlda

+

∫

∂B

enmk

∫

da

σ′
lkξmn

′
lda

′

︸ ︷︷ ︸
def
=mlkmnlda

= enmk

∫

∂B

[xmσlknl +mlkmnl] da

= enmk

∫

B

[σmk + xmσlk,l +mlkm,l] dv (33)

∫

B

{∫

dv

enmk [−σ′
mk] dv

′

}
= −enmk

∫

B

∫

dv

σ′
mkdv

′

︸ ︷︷ ︸
def
= smkdv

= −enmk
∫

B

smkdv (34)
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∫

B

{∫

dv

enmk [ρ′(xm + ξm)f ′
k] dv

′

}
=

∫

B

enmkxm

∫

dv

ρ′f ′
kdv

′

︸ ︷︷ ︸
def
= ρfkdv

+

∫

B

enmk

∫

dv

ρ′f ′
kξmdv

′

︸ ︷︷ ︸
def
= ρℓkmdv

= enmk

∫

B

(xmρfk + ρℓkm) dv (35)

∫

B

{∫

dv

enmk [ρ′(xm + ξm)(−a′k)] dv′
}

= −enmk
∫

B

{∫

dv

ρ′(xmak + xmξ̈k + ξmak

+ξmξ̈k)dv
′
}

= −enmk
∫

B



xmak

∫

dv

ρ′dv′

︸ ︷︷ ︸
def
= ρdv

+xm(ν̇kc + νkbνbc)

∫

dv

ρ′ξcdv
′

︸ ︷︷ ︸
=0

+ak

∫

dv

ρ′ξmdv
′

︸ ︷︷ ︸
=0

+

∫

dv

ρ′ξ̈kξmdv
′

︸ ︷︷ ︸
def
= ρωkmdv




= −enmk
∫

B

[xmρak + ρωkm] dv (36)

where mlkm is the higher order (couple) stress, smk is the symmetric microstress, ℓkm
is the body force couple, and ωkm is the micro-spin inertia. Combining the terms, we

have

enmk

∫

B



xm(σlk,l + ρ(fk − ak)︸ ︷︷ ︸
=0

) + σmk − smk +mlkm,l + ρ(ℓkm − ωkm)



 dv = 0

enmk

∫

B

[σmk − smk +mlkm,l + ρ(ℓkm − ωkm)] dv = 0 (37)

Thus, upon localizing the integral,
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enmk [σmk − smk +mlkm,l + ρ(ℓkm − ωkm)] = 0 (38)

σ[mk] − s[mk]︸︷︷︸
=0

+ml[km],l + ρ(ℓ[km] − ω[km]) = 0 (39)

resulting in

σ[mk] +ml[km],l + ρ(ℓ[km] − ω[km]) = 0 (40)

where the antisymmetric definition σ[mk] = (σmk − σkm)/2. Equation 40 is the

pointwise balance of angular momentum on B, providing three equations to solve for

a microrotation vector ϕk (Eringen, 1968). But we want to solve for the general

nine-dimensional microdeformation tensor χkK , thus we need six more equations.

The balance of the first moment of momentum provides these additional equations.

3. φ′ = x′m, balance of the first moment of momentum: The analysis follows that used

for the balance of angular momentum, except we do not multiply by the permutation

tensor enmk. Thus, we may write equation 38 directly without enmk:

σmk − smk +mlkm,l + ρ(ℓkm − ωkm) = 0 (41)

This, in general, provides nine equations to solve for a microdisplacement gradient

tensor ΦkK through the definition χkK = δkK + ΦkK . We note that euation 41

encompasses equation 40 (the three antisymmetric equations), and provides six

additional equations (the symmetric part of equaiton 41) (Eringen and Suhubi, 1964).

Balance of energy: It is assumed the classical balance of energy equation holds in

microelement dv′ over macroelement dv as

∫

dv

ρ′ė′dv′ =

∫

dv

(σ′
klv

′
l,k + q′k,k + ρ′r′)dv′ (42)

where ė′ is the microinternal energy density per unit mass, q′k the micro-heat flux, and r′

the micro-heat source density per unit mass. This is then integrated to hold over the whole

body B as

∫

B

{∫

dv

ρ′ė′dv′
}

=

∫

B

{∫

dv

(σ′
klv

′
l,k + q′k,k + ρ′r′)dv′

}
(43)
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The individual terms in equation 43 can be analyzed, using v′l = vl + ξ̇l = vl + νlmξm,

a′l = al + ξ̈l, and σ′
kl,k = ρ′(a′l − f ′

l ):

∫

dv

ρ′ė′dv′ =

∫

dV

ρ′0ė
′dV ′ =

D

Dt

∫

dV

ρ′0e
′dV ′

︸ ︷︷ ︸
def
= ρ0edV=ρedv

=
D

Dt
(ρ0edV ) = ρ0ėdV = ρėdv (44)

∫

dv

σ′
klv

′
l,kdv

′ =

∫

dv

[
(σ′

klv
′
l),k − σ′

kl,kv
′
l

]
dv′ (45)

=

∫

da

σ′
klv

′
ln

′
kda

′ −
∫

dv

σ′
kl,kv

′
ldv

′

=

∫

da

σ′
kl(vl + νlmξm)n′

kda
′ −
∫

dv

ρ′(a′l − f ′
l )(vl + νlmξm)dv′

= vl

∫

da

σ′
kln

′
kda

′

︸ ︷︷ ︸
def
= σklnkda

+νlm

∫

da

σ′
klξmn

′
kda

′

︸ ︷︷ ︸
def
=mklmnkda

−vl
∫

dv

ρ′a′ldv
′

︸ ︷︷ ︸
def
= ρaldv

+vl

∫

dv

ρ′f ′
ldv

′

︸ ︷︷ ︸
def
= ρfldv

−νlmal
∫

dv

ρ′ξmdv
′

︸ ︷︷ ︸
=0

−νlm
∫

dv

ρ′ξ̈lξmdv
′

︸ ︷︷ ︸
def
= ρωlmdv

+νlm

∫

dv

ρ′f ′
l ξmdv

′

︸ ︷︷ ︸
def
= ρℓlmdv∫

dv

q′k,kdv
′ =

∫

da

q′kn
′
kda

′ def
= qknkda (46)

∫

dv

ρ′r′dv′
def
= ρrdv (47)

Substituting these terms back into equation 43, we have

∫

B

ρėdv =

∫

∂B

(vlσklnk + νlmmklmnk)da−
∫

B

vlρ(al − fl)dv −
∫

B

νlmρ(ωlm − ℓlm)dv

+

∫

∂B

qknkda+

∫

B

ρrdv (48)

=

∫

B



vl(σkl,k + ρ(fl − al)︸ ︷︷ ︸
=0

) + νlm(mklm,k + ρ(ℓlm − ωlm)︸ ︷︷ ︸
=sml−σml

)

+vl,kσkl + νlm,kmklm + qk,k + ρr] dv

Localizing the integral, the pointwise balance of energy over B becomes

ρė = νlm(sml − σml) + vl,kσkl + νlm,kmklm + qk,k + ρr (49)
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Second Law of Thermodynamics and Clausius-Duhem Inequality: We assume the second

law is valid in microelement dv′ over dv such that

D

Dt

∫

dv

ρ′η′dv′

︸ ︷︷ ︸
R

dv
ρ′η̇′dv′

def
= ρη̇dv

−
∫

da

1

θ
q′kn

′
kda

′

︸ ︷︷ ︸
R
dv

(
q′
k
θ

),kdv
′
def
= (

qk
θ

),kdv

−
∫

dv

ρ′r′

θ
dv′

︸ ︷︷ ︸
def
= ρr

θ
dv

≥ 0 (50)

Note that no microtemperature θ′ is currently introduced (Eringen. 1999). Integrating over

B, localizing the integral, and multiplying by macrotemperature θ, we arrive at the

pointwise form of the second law as

∫

B

ρη̇dv −
∫

B

(
1

θ
qk,k −

qk
θ2
θ,k

)
dv −

∫

B

ρr

θ
dv ≥ 0 (51)

ρθη̇ − qk,k +
1

θ
qkθ,k − ρr ≥ 0 (52)

We derive the micromorphic Clausius-Duhem inequality by introducing the Helmholtz free

energy function ψ, and using the balance of energy in equaiton 49. Recall the definition of

ψ (Holzapfel, 2000), and its material time derivative leading to an expression for ρθη̇ in

equation 52 as

ψ = e− θη (53)

ψ̇ = ė− θ̇η − θη̇ (54)

ρθη̇ = ρė− ρθ̇η − ρψ̇ (55)

Upon substitution into equation 52 and using equation 49, we arrive at the micromorphic

Clausius-Duhem inequality:

−ρ(ψ̇ + ηθ̇) + σkl(vl,k − νlk) + sklνlk +mklmνlm,k +
1

θ
qkθ,k ≥ 0 (56)
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Summary of balance equations: The equations are now summarized over the current

configuration B as

balance of mass : Dρ

Dt
+ ρvk,k = 0

ρdv
def
=
∫
dv
ρ′dv′

balance of microinertia : Dikl

Dt
− νkmiml − νlmimk = 0

ρikldv
def
=
∫
dv
ρ′ξkξldv

′

balance of linear momentum : σlk,l + ρ(fk − ak) = 0

σlknlda
def
=
∫
da
σ′
lkn

′
lda

′

ρfkdv
def
=
∫
dv
ρ′f ′

kdv
′

ρakdv
def
=
∫
dv
ρ′a′kdv

′

balance of first moment of momentum : σml − sml +mklm,k + ρ(ℓlm − ωlm) = 0

smldv
def
=
∫
dv
σ′
mldv

′

mklmnkda
def
=
∫
da
σ′
klξmn

′
kda

′

ρℓlmdv
def
=
∫
dv
ρ′f ′

l ξmdv
′

ρωlmdv
def
=
∫
dv
ρ′ξ̈lξmdv

′

balance of energy : ρė = (skl − σkl)νlk + σklvl,k
+mklmνlm,k + qk,k + ρr

Clausius − Duhem inequality : −ρ(ψ̇ + ηθ̇) + σkl(vl,k − νlk) + sklνlk
+mklmνlm,k + 1

θ
qkθ,k ≥ 0






(57)

where D(•)/Dt is the material time derivative, ikl is the symmetric microinertia tensor, σlk
is the unsymmetric Cauchy stress, fk the body force vector per unit mass, f ′

l is the body

force vector per unit mass over the microelement, ak is the acceleration, sml is the

symmetric microstress, mklm the higher order couple stress, ℓlm the body force couple per

unit mass, ωlm the microspin inertia per unit mass, e is the internal energy per unit mass,

νlk is the microgyration tensor, vl,k is the velocity gradient, νlm,k is the spatial derivative of

the microgyration tensor, qk is the heat flux vector, r is the heat supply per unit mass, ψ is

the Helmholtz free energy per unit mass, η is the entropy per unit mass, and θ is the

absolute temperature. Note that the balance of first moment of momentum is more general

than the balance of angular momentum (or “moment of momentum” [Eringen, 1962]), such

that its skew-symmetric part is the angular momentum balance of a micropolar continuum

(see equation 40)). Recall that the Cauchy stress σ′
ml over the microelement is symmetric
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Figure 4. Differential area of microelement da′ within macroelement da in current con-
figuration B.

because the balance of angular momentum is satisfied over the microelement (Eringen and

Suhubi, 1964).

Physically, the microstress s defined in equation 574 as the volume average of the Cauchy

stress σ′ over the microelement, can be interpreted in the context of its difference with the

unsymmetric Cauchy stress as s− σ (Mindlin (1964) called this the “relative stress”). This

is the energy conjugate driving stress for the microdeformation χ through its microgyration

tensor ν = χ̇χ−1 in equation 575, and also the reduced dissipation inequality in the

intermediate configuration equations 95 and 98 as Σ̄− S̄ (the analogous stress difference in

B̄). In fact, we do not solve for s or Σ̄ directly, but constitutively we solve for the

difference s− σ or Σ̄− S̄ (see equation 118). The higher-order stress m is analogous to the

double stress µ in Mindlin (1964) with physical components of microstretch, microshear,

and microrotation shown in his figure 2. For example, m112 is the higher order shear stress

in the x2 direction based on a stretch in the x1 direction. Using the area average definition

for mklm, we have m112n1
def
= (1/da)

∫
da
σ′

11ξ2n
′
1da

′, where σ′
11 is the normal microelement

stress in the x1 direction, and ξ2 is the shear couple in the x2 direction.

2.3 Finite Strain Micromorphic Elastoplasticity

This section proposes a phenomenological bridging-scale constitutive modeling framework

in the context of finite strain micromorphic elastoplasticity based on a multiplicative
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decomposition of the deformation gradient F and microdeformation tensor χ into elastic

and plastic parts. In addition to the three translational displacement vector u degrees of

freedom (DOFs), there are nine DOFs associated with the unsymmetric microdeformation

tensor χ (microrotation, microstretch, and microshear). We leave the formulation general

in terms of χ, which can be further simplified depending on the material and associated

constitutive assumptions (see Forest and Sievert (2003, 2006)). The Clausius-Duhem

inequality formulated in the intermediate configuration yields the mathematical form of

three levels of plastic evolutions equations in either (1) Mandel-stress form (Mandel, 1974),

or (2) an alternate ‘metric’ form. For demonstration of the micromorphic elastoplasticity

modeling framework, J2 flow plasticity and linear isotropic elasticity are initially assumed,

extended to a pressure-sensitive Drucker-Prager plasticity model, and then mapped to the

current configuration for semi-implicit numerical time integration.

The formulation presented here differs from other works on finite strain micromorphic

elastoplasticity that consider a multiplicative decomposition into elastic and plastic parts

(Sansour 1998, Forest and Sievert, 2003, 2006) and those that do not (Lee and Chen, 2003;

Vernerey et al., 2007).

Sansour (1998) considered a finite strain Cosserat and micromorphic plastic continuum,

redefining the micromorphic strain measures (see equation B-) in appendix B) to be

invariant with respect to rigid rotations only, not also translations. Sansour did not extend

his formulation to include details on a finite strain micromorphic elastoplasticity

constitutive model formulation, as this report does. Sansour proposed to arrive at the

higher-order macro-continuum by integrally-averaging micro-continuum plasticity behavior

using computation. Such an approach is similar to computational homogenization, as

proposed by Forest and Sievert (2006) to estimate material parameters for generalized

continuum plasticity models. On a side note, one advantage to the micromorphic

continuum approach by Eringen and Suhubi (1964) is that the integral-averaging of certain

stresses, body forces, and microinertia terms are already part of the formulation. This

becomes especially useful when computationally homogenizing the underlying

microstructural mechanical response (e.g., provided by a microstructural FE or DE

simulation) in regions of interest, such as overlapping between micromorphic continuum

and grain/particle/fiber representations for a concurrent multiscale modeling approach

(figure 12).

Forest and Sievert (2003, 2006) established a hierarchy of elastoplastic models for

generalized continua, including Cosserat, higher grade, and micromorphic at small and

finite strain. Specifically with regard to micromorphic finite strain theory, Forest and

Sievert (2003) follows the approach of Germain (1973), which leads to different stress

power terms in the balance of energy and, in turn, Clausius-Duhem inequality than

presented by Eringen (1999). Also, the invariant elastic deformation measures do not
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match the sets 89 and B-1 proposed by Eringen (1999). Upon analyzing the change in

square of microelement arc-lengths (ds′)2 − (dS̄ ′)2 between current B and intermediate

configurations B̄ (cf. appendix C), then either set 89 or B-1 is unique. Forest and Sievert

(2003, 2006) proposed to use a mix of the two sets, i.e. equations 8)1, B-12, and B-13, in

their Helmholtz free energy function. When analyzing (ds′)2 − (dS̄ ′)2, they would also need

(B-1)1 as a fourth elastic deformation measure. As Eringen proposed, however, it is more

straightforward to use either set 89 or B-1 when representing elastic deformation. The

report presents both sets, but we use equation 89. Mandel stress tensors are identified in

Forest and Sievert (2003, 2006) to use in the plastic evolution equations. This report

presents additional Mandel stresses and considers also an alternate “metric”-form often

used in finite deformation elastoplasticity modeling.

Vernerey et al. (2007) treated micromorphic plasticity modeling similar to Germain (19730

and Mindlin (1964), which leads to different stress power terms and balance equations than

in Eringen (1999). The resulting plasticity model form is thus similar to Forest and Sievert

(2003), although does not use a multiplicative decomposition and thus does not assume the

existence of an intermediate configuration. An extension presented by Vernerey et al.

(2007) is to consider multiple scale micromorphic kinematics, stresses, and balance

equations, where the number of scales is a choice made by the constitutive modeler. A

multiple scale averaging procedure is introduced to determine material parameters at the

higher scales based on lower scale response.

In general, in terms of a multiplicative decomposition of the deformation gradient and

microdeformation, as compared to recent formulations of finite strain micromorphic

elastoplasticity reported in the literature (just reviewed in preceding paragraphs), we view

our approach to be more in line with the original concept and formulation presented by

Eringen and Suhubi (1964), Eringen (1999), which provide a clear link between

microelement and macroelement deformation, balance equations, and stresses. Thus, we

believe our formulation and resulting elastoplasticity model framework is more general

than what has been presented previously. The paper by Lee and Chen (2003) also follows

closely Eringen’s micromorphic kinematics and balance laws, but does not treat

multiplicative decomposition kinematics and subsequent constitutive model form in the

intermediate configuration, as this report does. We demonstrate the formulation for three

levels of J2 plasticity and linear isotropic elasticity, as well as pressure-sensitive

Drucker-Prager plasticity, and numerical time integration by a semi-implicit scheme in the

current configuration B.

2.3.1 Kinematics

We assume a multiplicative decomposition of the deformation gradient (Lee, 1969) and

microdeformation (Sansour, 1998; Forest and Sievert, 2003, 2006) (figures 5), such that
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F = FeFp , χ = χeχp (58)

FkK = F e
kK̄F

p

K̄K
, χkK = χekK̄χ

p

K̄K

Given the multiplicative decompositions of F and χ, the velocity gradient and

microgyration tensors can be expressed as

ℓ = ḞF−1 = ḞeFe−1 + FeL̄pFe−1 = ℓe + ℓp (59)

vl,k = Ḟ e
lĀF

e−1
Āk

+ F e
lB̄L̄

p

B̄C̄
F e−1

C̄k
= ℓelk + ℓplk

L̄p
B̄C̄

= Ḟ p

B̄B
F p−1

BC̄

ν = χ̇χ−1 = χ̇eχe−1 + χeL̄χ,pχe−1 = νe + νp (60)

νlk = χ̇elĀχ
e−1
Āk

+ χelB̄L̄
χ,p

B̄C̄
χe−1

C̄k
= νelk + νplk

L̄χ,p
B̄C̄

= χ̇p
B̄B
χp−1

BC̄

In the next section, the Clausius-Duhem inequality requires the spatial derivative of the

microgyration tensor, which split into elastic and plastic parts based on (60). Thus, it is

written as

∇ν = ∇νe + ∇νp (61)

νlm,k = νelm,k + νplm,k

νelm,k = χ̇elĀ,kχ
e−1
Ām

− νelnχ
e
nD̄,kχ

e−1
D̄m

(62)

νplm,k =
(
χelC̄,k χ̇

p

C̄A
+ χelĒ χ̇

p

ĒA,k
− χelF̄ L̄

χ,p

F̄ Ḡ
χp
ḠA,k

)
χ−1
Am

−νplaχeaĀ,kχe−1
Ām

(63)

The spatial derivative of the elastic microdeformation tensor ∇χe is analogous to the small

strain microdeformation gradient ℵ in Mindlin (1964), and its physical interpretation in

figure 2 of Mindlin (1964). For example, χe11,2 is an elastic microshear gradient in the x2

direction based on a microstretch in the x1 direction. Furthermore, just as differential

macroelement volumes map as

dv = JdV = JeJpdV = JedV̄ (64)

where Je = detFe and Jp = detFp, then microelement differential volumes map as
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Figure 5. Multiplicative decomposition of deformation gradient F and microdeformation
tensor χ into elastic and plastic parts, and the existence of an intermediate
configuration B̄. Since Fe, Fp, χe, and χp can load and unload independently
(although coupled through constitutive equations and balance equations), ad-
ditional configurations are shown. The constitutive equations and balance
equations presented in the report govern these deformation processes, and so
generality is preserved.
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dv′ = J ′dV ′ = Je′Jp′dV ′ = Je′dV̄ ′ (65)

where Je′ = detFe′ and Jp′ = detFp′. Fe′ and Fp′ have not been defined from equation 5),

and are not required for formulating the final constitutive equations. Likewise, according to

micro- and macroelement mass conservation, mass densities map as

ρ0 = ρJ = ρJeJp = ρ̄Jp (66)

ρ′0 = ρ′J ′ = ρ′Je′Jp′ = ρ̄′Jp′ (67)

This last result was achieved by using a volume-average definition relating macroelement

mass density to microelement mass density as

ρdv
def
=

∫

dv

ρ′dv′ , ρ0dV
def
=

∫

dV

ρ′0dV
′ , ρ̄dV̄

def
=

∫

dV̄

ρ̄′dV̄ ′ (68)

This volume averaging approach by Eringen and Suhubi (1964) is used extensively in

formulating the balance equations and Clausius-Duhem inequality in section 2.2.2.

2.4 Clausius-Duhem Inequality in B̄

This section focusses on the Clausius-Duhem inequality mapped to the intermediate

configuration to identify evolution equations for various plastic deformation rates that

must be defined constitutively, and their appropriate conjugate stress arguments in B̄.

From a materials modeling perspective, it is often preferred to write the Clausius-Duhem

inequality in the intermediate configuration B̄, which is considered naturally elastically

unloaded, and formulate constitutive equations there. The physical motivation lies with

earlier work by Kondo (1952), Bilby et al. (1955), Kroner (1960), and others, who viewed

dislocations in crystals as defects with associated local elastic deformation, where

macroscopic elastic deformation could be applied and removed without disrupting the

dislocation structure of a crystal. More recent models extend this concept, such as papers

by Clayton et al. (2005, 2006) and references therein. The intermediate configuration B̄
can be considered a “reference” material configuration in which fabric/texture anisotropy

and other inelastic material properties can be defined. Thus, details on the mapping to B̄
are given in this section. Recall that the Clausius-Duhem inequality in equation 576 was

written using localization of an integral over the current configuration B, such that
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∫

B

[
−ρ(ψ̇ + ηθ̇) + σkl(vl,k − νlk) + sklνlk +mklmνlm,k +

1

θ
qkθ,k

]
dv ≥ 0 (69)

Using the microelement Piola transform σ′
kl = F e′

kK̄S̄
′
K̄L̄
F e′

lL̄/J
e′ and Nanson’s formula

n′
kda

′ = Je′F e′
Āk

−1N̄ ′
Ā
dĀ′, the following mappings of the area-averaged unsymmetric Cauchy

stress σ, volume-averaged symmetric microstress s, and area-averaged higher order couple

stress m terms are obtained as

σmlnmda
def
=

∫

da

σ′
mln

′
mda

′

=

∫

dĀ

1

Je′
F e′
mM̄ S̄

′
M̄N̄F

e′
lN̄J

e′F e′
Ām

−1
N̄ ′
ĀdĀ

′

=

∫

dĀ

F e′
lN̄ S̄

′
M̄N̄N̄

′
M̄dĀ

′

= F e
lN̄ S̄M̄N̄ N̄M̄dĀ

where S̄M̄N̄N̄M̄dĀ
def
= F e

N̄a
−1

∫

dĀ

F e′
aB̄S̄

′
ĀB̄N̄

′
ĀdĀ

′

recall N̄M̄dĀ =
1

Je
F e
mM̄nmda

=
1

Je
F e
mM̄ S̄M̄N̄F

e
lN̄

︸ ︷︷ ︸
=σml

nmda (70)

skldv
def
=

∫

dv

σ′
kldv

′ =

∫

dV̄

1

Je′
F e′
kK̄S̄

′
K̄L̄F

e′
lL̄J

e′dV̄ ′

= F e
kK̄F

e
lL̄Σ̄K̄L̄dV̄

where Σ̄K̄L̄dV̄
def
= F e

K̄i
−1F e

L̄j
−1

∫

dV̄

F e′
iĪF

e′
jJ̄ S̄

′
Ī J̄dV̄

′

=
1

Je
F e
kK̄Σ̄K̄L̄F

e
lL̄

︸ ︷︷ ︸
=skl

dv (71)
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mklmnkda
def
=

∫

da

σ′
klξmn

′
kda

′

=

∫

dĀ

1

Je′
F e′
kK̄S̄

′
K̄L̄F

e′
lK̄χ

e
mM̄ Ξ̄M̄J

e′F e′
Āk

−1
N̄ ′
ĀdĀ

′

=

∫

dĀ

F e′
lL̄χ

e
mM̄ S̄

′
K̄L̄Ξ̄M̄N̄

′
K̄dĀ

′

= F e
lL̄χ

e
mM̄M̄K̄L̄M̄N̄K̄dĀ

where M̄K̄L̄M̄N̄K̄dĀ
def
= F e

L̄a
−1

∫

dĀ

F e′
aB̄S̄

′
K̄B̄Ξ̄M̄N̄

′
K̄dĀ

′

recall N̄K̄dĀ =
1

Je
F e
kK̄nkda

=
1

Je
F e
kK̄F

e
lL̄χ

e
mM̄M̄K̄L̄M̄

︸ ︷︷ ︸
=mklm

nkda (72)

where S̄ ′
K̄L̄

is the symmetric second Piola-Kirchhoff stress in the microelement intermediate

configuration (over dV̄ ), S̄K̄L̄ is the unsymmetric second Piola-Kirchhoff stress in the

intermediate configuration B̄, Σ̄K̄L̄ is the symmetric second Piola-Kirchhoff microstress in

the intermediate configuration B̄, M̄K̄L̄M̄ is the higher order couple stress written in the

intermediate configuration, and N̄K̄ the unit normal on dĀ. In general, Fe′ 6= Fe, but the

constitutive equations in section 2.3.3 do not require that Fe′ be defined or solved.

Using the mappings for ρ and dv, and the Piola transform on qk, the Clausius-Duhem

inequality can be rewritten in the intermediate configuration as

∫

B̄

[
−ρ̄( ˙̄ψ + η̄θ̇) + Jeσkl(vl,k − νlk) + Jesklνlk

+νlm,k
(
F e
kK̄F

e
lL̄χ

e
mM̄M̄K̄L̄M̄

)
+

1

θ
Q̄K̄θ,K̄

]
dV̄ ≥ 0 (73)

Individual stress power terms in equation 73 can be additively decomposed into elastic and

plastic parts based on equations 59–61. Using equation 61, the higher order couple stress

power can be written as
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νlm,k
(
F e
kK̄
F e
lL̄
χe
mM̄

M̄K̄L̄M̄

)
=

M̄K̄L̄M̄F
e
lL̄

(
χ̇e
aM̄,K̄

− νelnχ
e
nM̄,K̄

)}
elastic

+MK̄L̄M̄F
e
lL̄

(
−νplnχenM̄,K̄

+
[
χe
aC̄,K̄

χ̇p
C̄A

+ χe
aD̄
χ̇p
D̄A,K̄

− χeaB̄ L̄
χ,p

B̄Ē
χp
ĒA,K̄

]
χp−1

AM̄

)




 plastic

(74)

where the spatial derivative with respect to the intermediate configuration B̄ can be

defined as

(•),K̄ def
= (•),kF e

kK̄ (75)

The other stress power terms using equations 59 and 60 are written as

Jeσklvl,k = F e
kL̄Ḟ

e
kK̄S̄K̄L̄︸ ︷︷ ︸

elastic

+ C̄e
L̄B̄L̄

p

B̄K̄
S̄K̄L̄︸ ︷︷ ︸

plastic

(76)

Jeσklνlk = (F e
lL̄ν

e
lkF

e
kK̄) S̄K̄L̄︸ ︷︷ ︸

elastic

+ Ψ̄e
L̄ĒL̄

χ,p

ĒF̄
χe−1

F̄ k
F e
kK̄S̄K̄L̄︸ ︷︷ ︸

plastic

(77)

Jesklνlk = (F e
lL̄ν

e
lkF

e
kK̄) Σ̄K̄L̄︸ ︷︷ ︸

elastic

+ Ψ̄e
L̄ĒL̄

χ,p

ĒF̄
χe−1

F̄ k
F e
kK̄Σ̄K̄L̄︸ ︷︷ ︸

plastic

(78)

where C̄e
L̄B̄

= F e
aL̄
F e
aB̄

is the right elastic Cauchy-Green tensor C̄e = FeTFe in B̄, and

Ψ̄e
L̄Ē

= F e
lL̄χ

e
lĒ an elastic deformation measure in B̄ as Ψ̄e = FeTχe (cf. appendix C).

Similar to Eringen and Suhubi (1964) for a micromorphic elastic material, the Helmholtz

free energy function in B̄ is assumed to take the following functional form for micromorphic

elastoplasticity as

ρ̄ψ̄(Fe, χe, ∇̄χe, Z̄, Z̄χ, ∇̄Z̄χ, θ) (79)

ρ̄ψ̄(F e
kK̄ , χ

e
kK̄, χ

e
kM̄,K̄ , Z̄K̄, Z̄

χ

K̄
, Z̄χ

K̄,L̄
, θ)

where Z̄K̄ is a vector of macro strain-like ISVs in B̄, Z̄χ

K̄
is a vector of micro strain-like

ISVs, and Z̄χ

K̄,L̄
is a spatial derivative of a vector of micro strain-like ISVs. Then, by the

chain rule
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D(ρ̄ψ̄)

Dt
=

∂(ρ̄ψ̄)

∂F e
kK̄

Ḟ e
kK̄ +

∂(ρ̄ψ̄)

∂χe
kK̄

χ̇ekK̄ +
∂(ρ̄ψ̄)

∂χe
kM̄,K̄

D(χe
kM̄,K̄

)

Dt

+
∂(ρ̄ψ̄)

∂Z̄K̄

˙̄ZK̄ +
∂(ρ̄ψ̄)

∂Z̄χ

K̄

˙̄Zχ
K̄ +

∂(ρ̄ψ̄)

∂Z̄χ

K̄,L̄

D(Z̄χ

K̄,L̄
)

Dt
+
∂(ρ̄ψ̄)

∂θ
θ̇ (80)

where an artifact of the “free energy per unit mass” assumption is that

D(ρ̄ψ̄)

Dt
= ˙̄ρψ̄ + ρ̄ ˙̄ψ = −(ρ̄ψ̄)

J̇p

Jp
+ ρ̄ ˙̄ψ =⇒ ρ̄ ˙̄ψ = (ρ̄ψ̄)

J̇p

Jp
+
D(ρ̄ψ̄)

Dt
(81)

where we used the result ˙̄ρ = D(ρ0/J
p)/Dt = −ρ̄J̇p/Jp. Substituting equations 74–78 and

equations 80, 81 into equation 73, and using the Coleman and Noll (1963) argument for

independent rate processes (independent Ḟ e
kK̄

, χ̇e
kK̄

, D(χekM̄,K̄)/Dt, and θ̇), the

Clausius-Duhem inequality is satisfied if the following constitutive equations hold:

S̄K̄L̄ =
∂(ρ̄ψ̄)

∂F e
kK̄

F e−1
L̄k

(82)

Σ̄K̄L̄ =
∂(ρ̄ψ̄)

∂F e
kK̄

F e−1
L̄k

+ F e−1
K̄c
χecĀ

∂(ρ̄ψ̄)

∂χe
aĀ

F e−1
L̄a

+F e−1
K̄d
χedM̄ ,Ē

∂(ρ̄ψ̄)

∂χe
fM̄ ,Ē

F e−1
L̄f

(83)

M̄K̄L̄M̄ =
∂(ρ̄ψ̄)

∂χe
kM̄,K̄

F e−1
L̄k

(84)

ρ̄η̄ = −∂(ρ̄ψ̄)

∂θ
(85)

For comparison to the result reported in equation 6.3 of Eringen and Suhubi (1964), we

map these stresses to the current configuration, using
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σkl =
1

Je
F e
kK̄S̄K̄L̄F

e
lL̄ =

1

Je
F e
kK̄

∂(ρ̄ψ̄)

∂F e
lK̄

(86)

skl =
1

Je
F e
kK̄Σ̄K̄L̄F

e
lL̄

=
1

Je

(
F e
kK̄

∂(ρ̄ψ̄)

∂F e
lK̄

+ χekĀ
∂(ρ̄ψ̄)

∂χe
lĀ

+ χekM̄,Ē

∂(ρ̄ψ̄)

∂χe
lM̄ ,Ē

)
(87)

mklm =
1

Je
F e
kK̄F

e
lL̄χ

e
mM̄M̄K̄L̄M̄ =

1

Je
∂(ρ̄ψ̄)

∂χe
lM̄,K̄

F e
kK̄χ

e
mM̄ (88)

The equations match those in (6.3) of Eringen and Suhubi (1964) if elastic, i.e. Fe = F,

χe = χ. We prefer, however, to express the Helmholtz free energy function in terms of

invariant—with respect to rigid body motion on the current configuration B—elastic

deformation measures, such as the set proposed by Eringen and Suhubi (1964) as

C̄e
K̄L̄ = F e

kK̄F
e
kL̄ , Ψ̄e

K̄L̄ = F e
kK̄χ

e
kL̄ , Γ̄eK̄L̄M̄ = F e

kK̄χ
e
kL̄,M̄ (89)

We have good physical interpretation of Fe (and Fp) from crystal lattice mechanics (Bilby

et al., 1955; Kroner, 1960; Lee and Liu, 1967; Lee, 1969), while the elastic microdeformation

χe has its interpretation in figure 5 of this report (elastic deformation of microelement) and

also figure 1 of Mindlin (1964) for small strain theory. The spatial derivative of elastic

microdeformation ∇̄χe has it physical interpretation in figure 2 of Mindlin (1964), and was

earlier in this report described for example, as χe11,2 is the microshear gradient in the x2

direction based on a stretch in the x1 direction (although directions are not exact here

because of the spatial derivative with respect to the intermediate configuration B̄). The

Helmholtz free energy function ψ̄ per unit mass is then written as

ρ̄ψ̄(C̄e, Ψ̄e, Γ̄e, Z̄, Z̄χ, ∇̄Z̄χ, θ) (90)

ρ̄ψ̄(C̄e
K̄L̄, Ψ̄

e
K̄L̄, Γ̄

e
K̄L̄M̄ , Z̄K̄, Z̄

χ

K̄
, Z̄χ

K̄,L̄
, θ)

and the constitutive equations for stress result from equations 82–84 as
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S̄K̄L̄ = 2
∂(ρ̄ψ̄)

∂C̄e
K̄L̄

+
∂(ρ̄ψ̄)

∂Ψ̄e
K̄B̄

C̄e−1
L̄Ā

Ψ̄e
ĀB̄

+
∂(ρ̄ψ̄)

∂Γ̄e
K̄B̄C̄

C̄e−1
L̄Ā

Γ̄eĀB̄C̄ (91)

Σ̄K̄L̄ = 2
∂(ρ̄ψ̄)

∂C̄e
K̄L̄

+ 2sym

[
∂(ρ̄ψ̄)

∂Ψ̄e
K̄B̄

C̄e−1
L̄Ā

Ψ̄e
ĀB̄

]

+2sym

[
∂(ρ̄ψ̄)

∂Γ̄e
K̄B̄C̄

C̄e−1
L̄Ā

Γ̄eĀB̄C̄

]
(92)

M̄K̄L̄M̄ =
∂(ρ̄ψ̄)

∂Γ̄e
L̄M̄K̄

(93)

where sym [•] denotes the symmetric part. These stress equations 91–93 when mapped to

the current configuration are the same as equations 6.9-11 in Eringen and Suhubi (1964) if

there is no plasticity, i.e. Fe = F and χe = χ. To consider another set of elastic

deformation measures and resulting stresses, refer to appendix B.

The thermodynamically-conjugate stress-like ISVs are defined as

Q̄K̄
def
=
∂(ρ̄ψ̄)

∂Z̄K̄
, Q̄χ

K̄

def
=
∂(ρ̄ψ̄)

∂Z̄χ

K̄

, Q̄∇χ

K̄L̄

def
=

∂(ρ̄ψ̄)

∂Z̄χ

K̄,L̄

(94)

which are used in the evolution equations for plastic deformation rates, as well as multiple

scale yield functions, where we assume scalar Z̄, Z̄χ, ∇̄Z̄χ, and Q̄, Q̄χ, Q̄∇χ. The stress-like

ISVs in section 2.3.3 are physically interpreted as yield stress Q̄ and Q̄χ for

macro-plasticity (stress S̄ calculated from elastic deformation) and micro-plasticity (stress

difference Σ̄ − S̄ calculated from elastic deformation), respectively, while Q̄∇χ is a higher

order yield stress for microgradient plasticity (higher order stress M̄ calculated from

gradient elastic deformation).

The remaining terms in the Clausius-Duhem inequality lead to the reduced dissipation

inequality expressed in localized form in two ways: (1) Mandel form with Mandel-like

stresses (Mandel, 1974), and (2) an alternate ‘metric’ form. Each leads to different ways of

writing the plastic evolution equations, and stresses that are used in these evolution

equations. From equation 73, the reduced dissipation inequality in Mandel form is written

as
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(ρ̄ψ̄) J̇
p

Jp + 1
θ
Q̄K̄θ,K̄ − Q̄K̄

˙̄ZK̄ − Q̄χ

K̄
˙̄Zχ

K̄
− Q̄∇χ

K̄L̄

D(Z̄χ

K̄,L̄
)

Dt

+
(
S̄K̄B̄C̄

e
B̄L̄

)
L̄p
L̄K̄

+
[
C̄χ,e−1
K̄N̄

Ψ̄e
ĀN̄

(Σ̄ĀB̄ − S̄ĀB̄)Ψ̄e
B̄L̄

]
L̄χ,p
L̄K̄

+
(
M̄K̄L̄M̄Ψ̄e

L̄D̄

){
L̄χ,p
D̄M̄,K̄

− 2skw
[
L̄χ,p
D̄C̄

Ψ̄e−1
C̄F̄

Γ̄e
F̄ M̄K̄

]}
≥ 0

(95)

where C̄χ,e−1

K̄N̄
= χe−1

K̄kχ
e−1

N̄k, Ψ̄e−1
C̄F̄

= χe−1
C̄iF

e−1
F̄ i, skw [•] denotes the skew-symmetric

part defined as

2skw [•] def
=
[
L̄χ,p
D̄C̄

Ψ̄e−1
C̄F̄

Γ̄eF̄ M̄K̄

]
−
[
L̄χ,p
B̄M̄

Ψ̄e−1
D̄Ḡ

Γ̄eḠB̄K̄
]

(96)

and the spatial derivative of the micro-scale plastic velocity gradient is

L̄χ,p
D̄M̄,K̄

=
[
χ̇p
D̄B
χp−1

BM̄

]
,K̄

=
(
χ̇p
D̄B,K̄

− L̄χ,p
D̄B̄

χp
B̄B,K̄

)
χp−1

BM̄
(97)

The Mandel stresses are S̄K̄B̄C̄
e
B̄L̄

, C̄χ,e−1

K̄N̄
Ψ̄e
ĀN̄

(Σ̄ĀB̄ − S̄ĀB̄)Ψ̄e
B̄L̄

, and M̄K̄L̄M̄Ψ̄e
L̄D̄

, where the

first one is well known as the “Mandel stress,” whereas the second and third are the

relative micro-Mandel-stress and the higher order Mandel couple stress, respectively. We

rewrite the reduced dissipation inequality equatin 95 in an alternate “metric” form as

−(ρ̄ψ̄) J̇
p

Jp + 1
θ
Q̄K̄θ,K̄ − Q̄K̄

˙̄ZK̄ − Q̄χ

K̄
˙̄Zχ

K̄
− Q̄∇χ

K̄L̄
D
Dt

(Z̄χ

K̄,L̄
)

+S̄K̄L̄
(
C̄e
L̄B̄
L̄p
B̄K̄

)
+ (Σ̄K̄L̄ − S̄K̄L̄)

[
Ψ̄e
L̄Ē
L̄χ,p
ĒF̄
C̄χ,e−1

F̄ N̄
Ψ̄e
K̄N̄

]

+M̄K̄L̄M̄

{
Ψ̄e
L̄D̄
L̄χ,p
D̄M̄,K̄

− 2Ψ̄e
L̄D̄

skw
[
L̄χ,p
D̄C̄

Ψ̄e−1
C̄F̄

Γ̄e
F̄ M̄K̄

]}
≥ 0

(98)

Form of plastic evolution equations: Based on equation 95, in order to satisfy the reduced

dissipation inequality, we can write plastic evolution equations to solve for F p

K̄K
, χp

K̄K
, and

χp
K̄K,L̄

in Mandel stress form as
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L̄p
L̄K̄

= H̄L̄K̄

(
S̄C̄e, Q̄

)
(99)

solve for F p

K̄K
andF e

kK̄ = FkKF
p−1
KK̄

L̄χ,p
L̄K̄

= H̄χ

L̄K̄

(
(C̄χ,e)−1Ψ̄eT (Σ̄ − S̄)Ψ̄e, Q̄χ

)
(100)

solve for χp
K̄K

andχekK̄ = χkKχ
p−1
KK̄

L̄χ,p
D̄M̄,K̄

− 2skw
[
L̄χ,p
D̄C̄

Ψ̄e−1
C̄F̄

Γ̄eF̄ M̄K̄

]
= H̄∇χ

D̄M̄K̄

(
M̄Ψ̄e, Q̄∇χ

)

(101)

solve for χp
K̄K,L̄

andχekK̄,L̄ = (χkK,L̄ − χekĀχ
p

ĀK,L̄
)χp−1

KK̄

where the arguments in parentheses (•) denote the Mandel stress and stress-like ISV to use

in the respective plastic evolution equation, where H̄, H̄χ, and H̄∇χ denote tensor

functions for the evolution equations, chosen to ensure that convexity is satisfied, and the

dissipation is positive. This can be seen for the evolution equations in 102–104 by the

constitutive definitions in equations 120, 124, and 128 in terms of stress gradients of

potential functions (i.e., the yield functions for associative plasticity). In an alternate

“metric” form, from equation 98, we can solve for the plastic deformation variables as

C̄e
L̄B̄L̄

p

B̄K̄
= H̄L̄K̄

(
S̄, Q̄

)
(102)

solve for F p

K̄K
andF e

kK̄ = FkKF
p−1
KK̄

Ψ̄e
L̄ĒL̄

χ,p

ĒF̄
C̄χ,e−1

F̄ N̄
Ψ̄e
K̄N̄ = H̄χ

L̄K̄

(
Σ̄ − S̄, Q̄χ

)
(103)

solve for χp
K̄K

andχekK̄ = χkKχ
p−1
KK̄

Ψ̄e
L̄D̄L̄

χ,p

D̄M̄,K̄
− 2Ψ̄e

L̄D̄skw
[
L̄χ,p
D̄C̄

Ψ̄e−1
C̄F̄

Γ̄eF̄ M̄K̄

]
= H̄∇χ

L̄M̄K̄

(
M̄, Q̄∇χ

)

(104)

solve for χp
K̄K,L̄

andχekK̄,L̄ = (χkK,L̄ − χekĀχ
p

ĀK,L̄
)χp−1

KK̄

We use this “metric” form in defining evolution equations in section 2.3.3.

Remark 1. The reason that we propose the third plastic evolution equation 101 or 104 to

solve for χp
K̄K,L̄

directly (not calculating a spatial derivative of the tensor χp
K̄K

from a FE

interpolation of χp) is to potentially avoid requiring an additional balance equation to solve

in weak form by a nonlinear FE method (refer to Regueiro et al. (2007) and references

therein). With future FE implementation and numerical examples, we will attempt to

determine whether equations 101 or 104 leads to an accurate calculation of χp
K̄K,L̄

. In

Regueiro (2010), a simpler anti-plane shear version of the model demonstrates the two

ways for calculating ∇̄χp, either by an evolution equation like in equations 101 or 104, or a

FE interpolation for χp and corresponding gradient calculation ∇̄χp. Note that in Forest

and Sievert (2003), for their equation 1553, they also propose a direct evolution of a

gradient of plastic microdeformation.
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2.4.1 Constitutive Equations

The constitutive equations for linear isotropic elasticity, J2 flow associative plasticity, and

Drucker-Prager nonassociative plasticity with scalar ISV hardening/softening are

formulated. We define a specific form of the Helmholtz free energy function, yield

functions, and evolution equations for ISVs, and then conduct a semi-implicit numerical

time integration presented in section 2.3.4.

2.4.2 Linear Isotropic Elasticity and J2 Flow Isochoric Plasticity

Helmholtz free energy and stresses: Assuming linear elasticity and linear relation

between stress-like and strain-like ISVs, a quadratic form for the Helmholtz free energy

function results as

ρ̄ψ̄
def
=

1

2
Ēe
K̄L̄ĀK̄L̄M̄N̄ Ē

e
M̄N̄ +

1

2
ĒeK̄L̄B̄K̄L̄M̄N̄ ĒeM̄N̄

+
1

2
Γ̄eK̄L̄M̄ C̄K̄L̄M̄N̄P̄ Q̄Γ̄eN̄P̄ Q̄ + Ēe

K̄L̄D̄K̄L̄M̄N̄ ĒeM̄N̄

+
1

2
H̄Z̄2 +

1

2
H̄χ(Z̄χ)2 +

1

2
Z̄χ

,K̄
H̄∇χ

K̄L̄
Z̄χ

,L̄
(105)

Note that the ISVs are scalar variables in this model, which are related to scalar yield

strength of the material at two scales, macro and micro, and H̄ and H̄χ are scalar

hardening/softening parameters, and H̄∇χ

K̄L̄
is a symmetric second order hardening/softening

modulus tensor, which we assume is isotropic as H̄∇χ

K̄L̄
= (H̄∇χ)δK̄L̄. Elastic strains are

defined as (Suhubi and Eringen, 1964) 2Ēe
K̄L̄

= C̄e
K̄L̄

− δK̄L̄ and Ēe
K̄L̄

= Ψ̄e
K̄L̄

− δK̄L̄. The

elastic moduli are defined for isotropic linear elasticity, after manipulation of equations in

Suhubi and Eringen (1964) as
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ĀK̄L̄M̄N̄ = λδK̄L̄δM̄N̄ + µ (δK̄M̄δL̄N̄ + δK̄N̄δL̄M̄) (106)

B̄K̄L̄M̄N̄ = (η − τ)δK̄L̄δM̄N̄ + κδK̄M̄δL̄N̄ + νδK̄N̄δL̄M̄

−σ(δK̄M̄δL̄N̄ + δK̄N̄δL̄M̄) (107)

C̄K̄L̄M̄N̄P̄ Q̄ = τ1
(
δK̄L̄δM̄N̄δP̄ Q̄ + δK̄Q̄δL̄M̄δN̄P̄

)

+τ2
(
δK̄L̄δM̄P̄ δN̄Q̄ + δK̄M̄δL̄Q̄δN̄ P̄

)

+τ3δK̄L̄δM̄Q̄δN̄P̄ + τ4δK̄N̄δL̄M̄δP̄ Q̄

+τ5
(
δK̄M̄δL̄N̄δP̄ Q̄ + δK̄P̄ δL̄M̄δN̄Q̄

)

+τ6δK̄M̄δL̄P̄ δN̄Q̄ + τ7δK̄N̄δL̄P̄ δM̄Q̄

+τ8
(
δK̄P̄ δL̄Q̄δM̄N̄ + δK̄Q̄δL̄N̄δM̄P̄

)
+ τ9δK̄N̄δL̄Q̄δM̄P̄

+τ10δK̄P̄ δL̄N̄δM̄Q̄ + τ11δK̄Q̄δL̄P̄ δM̄N̄ (108)

D̄K̄L̄M̄N̄ = τδK̄L̄δM̄N̄ + σ(δK̄M̄δL̄N̄ + δK̄N̄δL̄M̄) (109)

where ĀK̄L̄M̄N̄ and D̄K̄L̄M̄N̄ have major and minor symmetry, while B̄K̄L̄M̄N̄ and C̄K̄L̄M̄N̄P̄ Q̄

have only major symmetry, and the elastic parameters are λ, µ, η, τ , κ, ν, σ, τ1 . . . τ11.

Note that the units for τ1 . . . τ11 are stress×length2 (e.g., Pa.m2), thus there is a built-in

length-scale to these elastic parameters for the higher order stress. The elastic modulus

tensors ĀK̄L̄M̄N̄ , B̄K̄L̄M̄N̄ , and D̄K̄L̄M̄N̄ are not the same as in (Eringen, 1999) because

different elastic strain measures were used, but the higher order elastic modulus tensor

C̄K̄L̄M̄N̄P̄ Q̄ is the same. Note that Ā is the typical linear isotropic elastic tangent modulus

tensor, and λ and µ are the Lamé parameters. After some algebra using equations 91–94,

and 105, it can be shown that the stress constitutive relations are

S̄K̄L̄ = ĀK̄L̄M̄N̄ Ē
e
M̄N̄ + D̄K̄B̄M̄N̄ ĒeM̄N̄

+(D̄K̄B̄M̄N̄ Ē
e
M̄N̄ + B̄K̄B̄M̄N̄ ĒeM̄N̄)

[
C̄−1
L̄Ā

ĒeĀB̄ + δL̄B̄
]

+C̄K̄B̄C̄N̄P̄ Q̄Γ̄eN̄P̄ Q̄C̄
e−1
L̄Q̄

Γ̄eQ̄B̄C̄ (110)

Σ̄K̄L̄ = ĀK̄L̄M̄N̄ Ē
e
M̄N̄ + D̄K̄B̄M̄N̄ ĒeM̄N̄

+2sym
{
(D̄K̄L̄M̄N̄ Ē

e
M̄N̄ + B̄K̄B̄M̄N̄ ĒeM̄N̄ )

[
C̄e−1
L̄Ā

ĒeĀB̄ + δL̄B̄
]

+C̄K̄B̄C̄N̄P̄ Q̄Γ̄eN̄P̄ Q̄C̄
e−1
L̄Q̄

Γ̄eQ̄B̄C̄

}
(111)

M̄K̄L̄M̄ = C̄K̄L̄M̄N̄P̄ Q̄Γ̄eN̄P̄ Q̄ (112)

Q̄ = H̄Z̄ (113)

Q̄χ = H̄χZ̄χ (114)

Q̄χ

L̄
= H̄∇χZ̄χ

,L̄
(115)

Note that the units for H̄∇χ are stress×length2 (e.g., Pa.m2), thus there is a built-in
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length-scale to this hardening/softening parameter for the higher-order stress-like ISV.

Assuming elastic deformations are small, we ignore quadratic terms in equations 110 and

111 relative to the linear terms, leading to the simplified stress constitutive equations for

S̄K̄L̄ and Σ̄K̄L̄ as

S̄K̄L̄ = (ĀK̄L̄M̄N̄ + D̄K̄L̄M̄N̄)Ēe
M̄N̄ + (B̄K̄L̄M̄N̄ + D̄K̄L̄M̄N̄ )ĒeM̄N̄

= (λ+ τ)(Ēe
M̄M̄)δK̄L̄ + 2(µ+ σ)Ēe

K̄L̄ (116)

+η(ĒeM̄M̄)δK̄L̄ + κĒeK̄L̄ + νĒeL̄K̄
Σ̄K̄L̄ = (λ+ τ)(Ēe

M̄M̄)δK̄L̄ + 2(µ+ σ)Ēe
K̄L̄ (117)

+η(ĒeM̄M̄)δK̄L̄ + 2sym
[
κĒeK̄L̄ + νĒeL̄K̄

]

Note that the stress difference used in equation 103 then becomes

Σ̄ − S̄ = κĒeT

+ νĒe (118)

Σ̄K̄L̄ − S̄K̄L̄ = κĒeL̄K̄ + νĒeK̄L̄

Yield functions and evolution equations: In this discussion, three levels of plastic

yield functions are defined based on the three conjugate stress-plastic-power terms

appearing in the reduced dissipation inequality equation 98, with the intent to define the

plastic deformation evolution equations such that equation 98 is satisfied. This allows

separate yielding and plastic deformation at two scales (micro and macro) including the

gradient deformation at the micro-scale. If only one yield function were chosen to be a

function of all three stresses (S̄, Σ̄, M̄), then yielding at the three scales would occur

simultaneously, a representation we feel is not as physical as if the scales can yield and

evolve separately (although coupled through balance equations and stress equations for S̄

and Σ̄). Recall the plastic power terms in equation 98 come naturally from the kinematic

assumptions F = FeFp and χ = χeχp, and from the Helmholtz free energy function

dependence on the invariant elastic deformation measures C̄e, Ψ̄e, Γ̄e, and the plastic

strain-like ISVs Z̄, Z̄χ, and ∇̄Z̄χ.

macroscale plasticity: For macroscale plasticity, we write the yield function F̄ as

F̄ (S̄, ᾱ)
def
= ‖devS̄‖ − ᾱ ≤ 0 (119)

‖devS̄‖ =
√

(devS̄) : (devS̄)

(devS̄) : (devS̄) = (devS̄Ī J̄)(devS̄Ī J̄)

devS̄Ī J̄
def
= S̄Ī J̄ −

(
1

3
C̄e
ĀB̄S̄ĀB̄

)
C̄e−1
Ī J̄
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where ᾱ is the macro yield strength (i.e., stress-like ISV Q̄
def
= ᾱ)

The definitions of the plastic velocity gradient L̄p and strain-like ISV then follow as

C̄e
L̄B̄L̄

p

B̄K̄

def
= ˙̄γ

∂F̄

∂S̄K̄L̄
(120)

∂F̄

∂S̄K̄L̄
= ˆ̄N K̄L̄

ˆ̄N K̄L̄ =
devS̄K̄L̄
‖devS̄‖

˙̄Z
def
= − ˙̄γ

∂F̄

∂ᾱ
= ˙̄γ (121)

ᾱ = H̄Z̄ (122)

where ˙̄γ is the macroplastic multiplier.

Micro-scale plasticity: For micro-scale plasticity, we write the yield function F̄ χ as

F̄ χ(Σ̄ − S̄, ᾱχ)
def
= ‖dev(Σ̄ − S̄)‖ − ᾱχ ≤ 0 (123)

dev(Σ̄Ī J̄ − S̄Ī J̄)
def
= (Σ̄Ī J̄ − S̄Ī J̄) −

[
1

3
C̄e
ĀB̄(Σ̄ĀB̄ − S̄ĀB̄)

]
C̄e−1
Ī J̄

where ᾱχ is the micro yield strength (stress-like ISV Q̄χ def
= ᾱχ). Note that at the

microscale, the yield strength ᾱχ can be determined separately from the macroscale

parameter ᾱ.

Remark 2. We use the same functional forms for macro and micro plasticity (F̄ χ with

similar functional form as F̄ , but different ISVs and parameters), but this is only for the

example model presented here. It is possible for the functional forms to be different when

representing different phenomenology at the micro and macroscales. More micromechanical

analysis and experimental data are necessary to determine the microplasticity functional

forms in the future.

The definitions of the microscale plastic velocity gradient L̄χ,p and strain-like ISV then

follow as
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Ψ̄e
L̄ĒL̄

χ,p

ĒF̄
C̄χ,e−1

F̄ N̄
Ψ̄e
K̄N̄

def
= ˙̄γχ

∂F̄ χ

∂(Σ̄K̄L̄ − S̄K̄L̄)
(124)

∂F̄ χ

∂(Σ̄K̄L̄ − S̄K̄L̄)
= ˆ̄Nχ

K̄L̄

ˆ̄Nχ

K̄L̄
=

dev(Σ̄K̄L̄ − S̄K̄L̄)

‖dev(Σ̄ − S̄)‖
˙̄Zχ def

= − ˙̄γχ
∂F̄ χ

∂ᾱχ
= ˙̄γχ (125)

ᾱχ = H̄χZ̄χ (126)

where ˙̄γχ is the micro plastic multiplier.

Microscale gradient plasticity: For microscale gradient plasticity, we write the yield

function F̄∇χ as

F̄∇χ(M̄, ᾱ∇χ)
def
= ‖devM̄‖ − ‖ᾱ∇χ‖ ≤ 0 (127)

devM̄Ī J̄K̄
def
= M̄Ī J̄K̄ − (C̄e−1)ĪJ̄

[
1

3
C̄e
ĀB̄M̄ĀB̄K̄

]

where ᾱ∇χ is the microgradient yield strength (stress-like ISV Q̄∇χ def
= ᾱ∇χ) Note that at

the gradient microscale, the yield strength can be determined separately from the micro

and macroscale parameters, which is a constitutive assumption. The definitions of the

spatial derivative of microscale plastic velocity gradient ∇̄L̄χ,p and strain-like ISV then

follow as

Ψ̄e
L̄D̄L̄

χ,p

D̄M̄,K̄
− 2Ψ̄e

L̄D̄skw
[
L̄χ,p
D̄C̄

Ψ̄e−1
C̄F̄

Γ̄eF̄ M̄K̄

] def
= ˙̄γ∇χ

∂F̄∇χ

∂M̄K̄L̄M̄

(128)

∂F̄∇χ

∂M̄K̄L̄M̄

=
devM̄K̄L̄M̄

‖devM̄‖
D(Z̄χ

,Ā
)

Dt
def
= − ˙̄γ∇χ

∂F̄

∂ᾱ∇χ

Ā

= ( ˙̄γ∇χ)
ᾱ∇χ

Ā

‖ᾱ∇χ‖ (129)

ᾱ∇χ

L̄
= H̄∇χZ̄χ

,L̄
(130)

where ˙̄γ∇χ is the microplastic gradient multiplier.
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Remark 3. The main advantage to defining constitutively the evolution of the spatial

derivative of the microscale plastic velocity gradient ∇̄L̄χ,p in equation 128 separate from

the microscale plastic velocity gradient L̄χ,p in equation 124 (i.e., no PDE in χ̇p
K̄K

) is to

avoid FE solution of an additional balance equation in weak form. One could allow ∇̄L̄χ,p

and ∇̄ ˙̄Zχ to be defined as the spatial derivatives of L̄χ,p and ˙̄Zχ, respectively, but then the

plastic evolution equations are PDEs and require coupled FE implementation (such as in

Regueiro et al. (2007)). We plan to implement the model, after time integration in section

2.3.4, within a coupled finite element formulation for the coupled balance of linear and first

moment of momentum, and thus avoiding another coupled equation to include in the FE

equations is desired.

Remark 4. With these evolution equations in B̄, equation 120 can be integrated

numerically to solve for Fp and in turn Fe, equation 124 can be integrated numerically to

solve for χp and in turn χe, and equation 128 can be integrated numerically to solve for

∇̄χp and in turn ∇̄χe. Then, the stresses S̄, Σ̄ − S̄, and M̄ can be calculated and mapped

to the current configuration to update the balance equations for FE nonlinear solution.

Such numerical time integration is carried out in section 2.3.4; and FE implementation is

ongoing work.

2.4.3 Drucker-Prager Pressure-Sensitive Plasticity

Following the “metric” form in equation 98, the J2 flow plasticity model is generalized to

include pressure-sensitivity of yield and volumetric plastic deformation (dilation only for

now, i.e., no cap on the yield and plastic potential surfaces that allows plastic compaction,

e.g., pore space collapse).

macroscale plasticity: For macroscale plasticity, we write yield F̄ and plastic potential Ḡ

functions as

F̄ (S̄, c̄)
def
= ‖devS̄‖ −

(
Aφc̄−Bφp̄

)
≤ 0 (131)

Aφ = βφ cos φ , Bφ = βφ sin φ , βφ =
2
√

6

3 + β sin φ

‖devS̄‖ =
√

(devS̄) : (devS̄)

(devS̄) : (devS̄) = (devS̄Ī J̄)(devS̄Ī J̄)

devS̄Ī J̄
def
= S̄ĪJ̄ −

(
1

3
C̄e
ĀB̄S̄ĀB̄

)
C̄e−1
ĪJ̄

p̄
def
=

1

3
C̄e
ĀB̄S̄ĀB̄ =

1

3
C̄e : S̄

Ḡ(S̄, c̄)
def
= ‖devS̄‖ −

(
Aψ c̄− Bψp̄

)
(132)
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where c̄ is the macro cohesion, φ is the macro friction angle, ψ is the macro dilation angle,

and −1 ≤ β ≤ 1 (β = 1 causes the Drucker-Prager yield surface to pass through the

triaxial extension vertices of the Mohr-Coulomb yield surface, and β = −1 is the triaxial

compression vertices). Functional forms of Aψ and Bψ are similar to Aφ and Bφ,

respectively, except φ is replaced with ψ. The yield and plastic potential functions have the

usual functional form for pressure-sensitive plasticity with cohesive and frictional strength,

as well as dilatancy (Desai and Siriwardane, 1984).

Remark 5. To satisfy the reduced dissipation inequality, it can be shown that φ ≥ ψ

(Vermeer and de Borst, 1984) which also has been verified experimentally. We note that

φ > ψ leads to nonassociative plasticity, which violates the principle of maximum plastic

dissipation (Lubliner 1990), but does not violate the reduced dissipation inequality. It is

well known that frictional materials like concrete and rock exhibit nonassociative plastic

flow, and thus such features are also included here. An associative flow rule is reached

when the friction and dilation angles are equal, φ = ψ.

The definitions of the plastic velocity gradient L̄p and strain-like ISV then follow as

C̄e
L̄B̄L̄

p

B̄K̄

def
= ˙̄γ

∂Ḡ

∂S̄K̄L̄
(133)

∂Ḡ

∂S̄K̄L̄
= ˆ̄N K̄L̄ +

1

3
BψC̄e

K̄L̄

ˆ̄N K̄L̄ =
devS̄K̄L̄
‖devS̄‖

˙̄Z
def
= − ˙̄γ

∂Ḡ

∂c̄
= Aψ ˙̄γ (134)

c̄ = H̄Z̄ (135)

where ˙̄γ is the macroplastic multiplier, and the stress-like ISV is Q̄
def
= c̄.

Remark 6. Note that the functional forms of the plastic evolution equations are similar to

those dictated by the principle of maximum plastic dissipation [Lubliner, 1990], except that

a plastic potential function Ḡ is used in place of the yield function F̄ (i.e., nonassociative).

For purposes of discussion, we show the evolution equations for small strain plasticity:

ǫ̇p
def
= γ̇

∂g

∂σ
, ζ̇

def
= −γ̇ ∂g

∂c
(136)

where ǫp is the plastic strain, and ζ the strain-like ISV. nonassociative plasticity violates the

principle of maximum plastic dissipation, but we use similar functional forms that satisfies
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the reduced dissipation inequality (i.e., the second law of thermodynamics is satisfied).

Microscale plasticity: For microscale plasticity, we write the yield F̄ χ and plastic potential

Ḡχ functions as

F̄ χ(Σ̄ − S̄, c̄χ)
def
= ‖dev(Σ̄ − S̄)‖ −

(
Aχ,φc̄χ −Bχ,φp̄χ

)
≤ 0 (137)

Aχ,φ = βχ,φ cosφχ , Bχ,φ = βχ,φ sinφχ , βχ,φ =
2
√

6

3 + βχ sin φχ

dev(Σ̄Ī J̄ − S̄Ī J̄)
def
= (Σ̄Ī J̄ − S̄Ī J̄) − p̄χC̄e−1

Ī J̄

p̄χ
def
=

1

3
C̄e
ĀB̄(Σ̄ĀB̄ − S̄ĀB̄)

Ḡχ(Σ̄ − S̄, c̄χ)
def
= ‖dev(Σ̄ − S̄)‖ −

(
Aχ,ψc̄χ − Bχ,ψp̄χ

)
(138)

where c̄χ is the microcohesion, φχ is the microfriction angle, ψχ is the micro dilation angle,

and −1 ≤ βχ ≤ 1, which are material parameters for the microscale. Functional forms of

Aχ,ψ and Bχ,ψ are similar to Aχ,φ and Bχ,φ, respectively, except φχ is replaced with ψχ.

Note that at the microscale, the cohesion, friction, and dilation angles can be determined

separately from the macroscale parameters, and likewise the yielding and plastic

deformation.

Remark 7. We use the same functional forms for macro and microplasticity (F̄ χ and Ḡχ

with similar functional form as F̄ and Ḡ), but this is only for the example model presented

here. It is possible for the functional forms to be different when representing different

phenomenology at the micro and macroscales. More micromechanical analysis and

experimental data are necessary to determine the pressure-sensitive microplasticity

functional forms in the future.

The definitions of the microscale plastic velocity gradient L̄χ,p and strain-like ISV then

follow as

Ψ̄e
L̄ĒL̄

χ,p

ĒF̄
C̄χ,e−1

F̄ N̄
Ψ̄e
K̄N̄

def
= ˙̄γχ

∂Ḡχ

∂(Σ̄K̄L̄ − S̄K̄L̄)
(139)

∂Ḡχ

∂(Σ̄K̄L̄ − S̄K̄L̄)
= ˆ̄Nχ

K̄L̄
+

1

3
Bχ,ψC̄e

K̄L̄

ˆ̄Nχ

K̄L̄
=

dev(Σ̄K̄L̄ − S̄K̄L̄)

‖dev(Σ̄ − S̄)‖
˙̄Zχ def

= − ˙̄γχ
∂Ḡχ

∂c̄χ
= Aχ,ψ ˙̄γχ (140)

c̄χ = H̄χZ̄χ (141)
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where ˙̄γχ is the microplastic multiplier, and Q̄χ def
= c̄χ.

Microscale gradient plasticity: For microscale gradient plasticity, we write the yield F̄∇χ

and plastic potential Ḡ∇χ functions as

F̄∇χ(M̄, c̄∇χ)
def
= ‖devM̄‖ −

(
A∇χ,φ‖c̄∇χ‖ − B∇χ,φ‖p̄∇χ‖

)
≤ 0 (142)

A∇χ,φ = β∇χ,φ cosφ∇χ , B∇χ,φ = β∇χ,φ sinφ∇χ , β∇χ,φ =
2
√

6

3 + β∇χ sin φ∇χ

devM̄Ī J̄K̄
def
= M̄Ī J̄K̄ − C̄e−1

ĪJ̄
p̄∇χ
K̄

p̄∇χ
K̄

def
=

1

3
C̄e
ĀB̄M̄ĀB̄K̄

Ḡ∇χ(M̄, c̄∇χ)
def
= ‖devM̄‖ −

(
A∇χ,ψ‖c̄∇χ‖ − B∇χ,ψ‖p̄∇χ‖

)
(143)

where c̄∇χ is the microgradient cohesion, φ∇χ the microgradient friction angle, ψ∇χ the

microgradient dilation angle, and −1 ≤ β∇χ ≤ 1, which are material parameters for the

gradient microscale. Functional forms of A∇χ,ψ and B∇χ,ψ are similar to A∇χ,φ and B∇χ,φ,

respectively, except φ∇χ is replaced with ψ∇χ. Note that at the gradient microscale, the

cohesion, friction, and dilation angles can be determined separately from the micro and

macroscale parameters, which is a constitutive assumption. The definitions of the gradient

of microscale plastic velocity gradient ∇̄L̄χ,p and strain-like ISV then follow as

Ψ̄e
L̄D̄L̄

χ,p

D̄M̄,K̄
− 2Ψ̄e

L̄D̄skw
[
L̄χ,p
D̄C̄

Ψ̄e−1
C̄F̄

Γ̄eF̄ M̄K̄

] def
= ˙̄γ∇χ

∂Ḡ∇χ

∂M̄K̄L̄M̄

(144)

∂Ḡ∇χ

∂M̄K̄L̄M̄

=
devM̄K̄L̄M̄

‖devM̄‖ +
1

3
B∇χ,ψC̄e

K̄L̄

p̄∇χ
M̄

‖p̄∇χ‖
˙̄Zχ

,Ā

def
= − ˙̄γ∇χ

∂Ḡ∇χ

∂c̄∇χ
Ā

= A∇χ,ψ( ˙̄γ∇χ)
c̄∇χ
Ā

‖c̄∇χ‖ (145)

c̄∇χ
L̄

= H̄∇χZ̄χ

,L̄
(146)

where ˙̄γ∇χ is the micro plastic gradient multiplier.

Remark 8. With these evolution equations in B̄, equation 133 can be integrated

numerically to solve for Fp and in turn Fe, equation 139 can be integrated numerically to

solve for χp and in turn χe, and equation 144 can be integrated numerically to solve for

∇̄χp and in turn ∇̄χe. Then, the stresses S̄, Σ̄ − S̄, and M̄ can be calculated and mapped
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to the current configuration to update the balance equations for finite element nonlinear

solution. Such numerical time integration are carried out in section 2.3.4 for the form of

the constitutive equations after mapping to the current configuration.

Mapping constitutive equations to current configuration B: often, the constitutive

equations in the intermediate configuration are mapped to the current configuration

Eringen and Suhubi [1964], and the material time derivative is taken to obtain an objective

stress rate and corresponding stress evolution equation in B (cf. Moran et al. (1990); Simo

(1998b)). Recall the stress mappings in equations 86–88, which when we take the material

time derivative, leads to the following equations

σ̇kl = − J̇
e

Je
σkl + ℓekiσil + σkiℓ

e
li +

1

Je
F e

kK̄
˙̄SK̄L̄F

e
lL̄ (147)

ṡkl = − J̇
e

Je
skl + ℓekisil + skiℓ

e
li +

1

Je
F e

kK̄
˙̄ΣK̄L̄F

e
lL̄ (148)

ṁklm = − J̇
e

Je
mklm + ℓekimilm +mkimℓ

e
li +mkliν

e
mi +

1

Je
F e

kK̄F
e
lL̄χ

e
mM̄

˙̄MK̄L̄M̄

(149)

To complete these equations, we need the material time derivative of the stresses in the

intermediate configuration, ˙̄SK̄L̄,
˙̄ΣK̄L̄, and ˙̄MK̄L̄M̄ , as well as the mapping of the plastic

evolutions equations to the current configuration. Given the constitutive equation for S̄K̄L̄
in equation 116, we can write

˙̄SK̄L̄ = (λ+ τ)( ˙̄Ee
M̄M̄)δK̄L̄ + 2(µ+ σ) ˙̄Ee

K̄L̄ + η( ˙̄EeM̄M̄)δK̄L̄

+κ ˙̄EeK̄L̄ + ν ˙̄EeL̄K̄ (150)

where ˙̄Ee
M̄N̄

= ˙̄Ce
M̄N̄

/2 and ˙̄Ee
M̄N̄

= ˙̄Ψe
M̄N̄

. We can show that

˙̄Ce
M̄N̄ = 2F e

iM̄d
e
ijF

e
jN̄ , deij = (ℓeij + ℓeji)/2 , ℓeij = Ḟ e

iĪF
e−1
Īj

(151)

˙̄Ψe
M̄N̄ = F e

iM̄ε
e
ijχ

e
jN̄ , εeij = νeij + ℓeji , νeij = χ̇eiĪχ

e−1
Īj

(152)

where de is the symmetric elastic deformation rate in B, and εe a mixed micro-macro

elastic velocity gradient in B. Then we can write
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F e
kK̄

˙̄SK̄L̄F
e
lL̄ = (λ+ τ)(beijd

e
ij)b

e
kl + 2(µ+ σ)bekid

e
ijb

e
jl + η(ψeijε

e
ij)b

e
kl

+κbekiε
e
ijψ

e
jl + νbeliε

e
ijψ

e
jk (153)

where the left elastic Cauchy-Green tensor is beij = F e
iN̄
F e
jN̄

and a mixed elastic deformation

tensor ψeij = F e
iN̄
χe
jN̄

. It is then possible to write the material time derivative of the stress

difference map as

F e
kK̄( ˙̄ΣK̄L̄ − ˙̄SK̄L̄)F

e
lL̄ = κbeliε

e
ijψ

e
jk + νbekiε

e
ijψ

e
jl (154)

For the couple stress, the material time derivative is written as

˙̄MK̄L̄M̄ = C̄K̄L̄M̄N̄P̄ Q̄
˙̄ΓeN̄P̄ Q̄ (155)

We can rewrite the gradient of elastic microdeformation as

Γ̄eN̄ P̄ Q̄ = F e
nN̄γ

e
npqχ

e
pP̄F

e
qQ̄ , γenpq

def
= χe−1

Āp
χenĀ,q (156)

such that

˙̄ΓeN̄P̄ Q̄ = F e
nN̄

◦
γ
e

npq χ
e
pP̄F

e
qQ̄ (157)

◦
γ
e

npq

def
= γ̇enpq + ℓeanγ

e
apq + γenpaℓ

e
aq + γenaqν

e
ap (158)

Then, the couple stress material time derivative map becomes

F e
kK̄F

e
lL̄χ

e
mM̄

˙̄MK̄L̄M̄ =
[
τ1
(
beklψ

e
nmψ

e
qp + ψelmψ

e
npb

e
kq

)

+τ2
(
beklb

χ,e
mpb

e
nq + ψekmb

e
lqψ

e
np

)

+τ3b
e
klψ

e
qmψ

e
np + τ4ψ

e
lmb

e
knψ

e
qp

+τ5
(
ψekmb

e
lnψ

e
qp + ψelmψ

e
kpb

e
nq

)

+τ6ψ
e
kmψ

e
lpb

e
nq + τ7b

e
knψ

e
lpψ

e
qm

+τ8
(
ψekpb

e
lqψ

e
nm + bekqb

e
lnb

χ,e
mp

)

+τ9b
e
knb

e
lqb

χ,e
mp + τ10ψ

e
kpb

e
lnψ

e
qm

+τ11b
e
kqψ

e
lpψ

e
nm

] ◦
γ
e

npq (159)
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where bχ,emp = χe
mM̄

χe
pM̄

. In summary, we have the stress evolution equations in B as

σ̇kl = − J̇
e

Je
σkl + ℓekiσil + σkiℓ

e
li +

1

Je
[
(λ+ τ)(beijd

e
ij)b

e
kl + 2(µ+ σ)bekid

e
ijb

e
jl + η(ψeijε

e
ij)b

e
kl

+κbekiε
e
ijψ

e
jl + νbeliε

e
ijψ

e
jk

]
(160)

ṡkl − σ̇kl = − J̇
e

Je
(skl − σkl) + ℓeki(sil − σil) + (ski − σki)ℓ

e
li +

1

Je
(κbeliε

e
ijψ

e
jk + νbekiε

e
ijψ

e
jl) (161)

ṁklm = − J̇
e

Je
mklm + ℓekimilm +mkimℓ

e
li +mkliν

e
mi +

1

Je
[
τ1
(
beklψ

e
nmψ

e
qp + ψelmψ

e
npb

e
kq

)
+ τ2

(
beklb

χ,e
mpb

e
nq + ψekmbelqψ

e
np

)

+τ3b
e
klψ

e
qmψ

e
np + τ4ψ

e
lmb

e
knψ

e
qp + τ5

(
ψekmb

e
lnψ

e
qp + ψelmψ

e
kpb

e
nq

)

+τ6ψ
e
kmψ

e
lpb

e
nq + τ7b

e
knψ

e
lpψ

e
qm + τ8

(
ψekpb

e
lqψ

e
nm + bekqb

e
lnb

χ,e
mp

)

+τ9b
e
knb

e
lqb

χ,e
mp + τ10ψ

e
kpb

e
lnψ

e
qm + τ11b

e
kqψ

e
lpψ

e
nm

] ◦
γ
e

npq (162)

where objective elastic stress rates are defined as

�

σkl
def
= σ̇kl − ℓekiσil − σkiℓ

e
li + deiiσkl (163)

�

(skl − σkl)

def
= (ṡkl − σ̇kl) − ℓeki(sil − σil) − (ski − σki)ℓ

e
li + deii(skl − σkl) (164)

�

mklm
def
= ṁklm − ℓekimilm −mkimℓ

e
li −mkliν

e
mi + deiimklm (165)

where J̇e/Je = deii. The stress rates on σ and (s − σ) are recognized as the elastic Truesdell

stress rates (Holzapfel, 2000), whereas the stress rate on the higher order stress is new, and

can similarly be defined as an elastic Truesdell higher order stress rate. To show
�

m is

objective, consider a rigid body motion (Holzapfel, 2000), with translation c and rotation

Q (orthogonal: QQT = 1) on the current configuration B, resulting in B+, such that

x′+ = c + Q(x + ξ) = c + Qx′ (166)

Recall the definition of the higher order stress through the area-averaging, but now on the

translated and rotated configuration B+ as

47



m+
klmn

+
k da

def
=

∫

da

σ′+
kl ξ

+
mn

′+
k da

′

where σ′+
kl = Qkaσ

′
abQlb , ξ

+
m = Qmcξc , n

′+
k = Qkdn

′
d

=

∫

da

Qkaσ
′
abQlbQmcξcQkdn

′
dda

′

= Qka

(∫

da

σ′
abξcn

′
dda

′

)

︸ ︷︷ ︸
def
=mabcndda

QlbQmcQkd

= QkamabcQlbQmc︸ ︷︷ ︸
=m+

klm

n+
k da (167)

We employ the standard results (Holzapfel, 2000)

ℓe+kl = Ωkl +Qkiℓ
e
ijQlj (168)

νe+kl = Ωkl +Qkiν
e
ijQlj (169)

de+ii = deii (170)

where Ωkl = Q̇kaQla. We substitute into the expression for
�

m
+

, with after some tensor

algebra, we can show that
�

m is objective:

�

m
+

klm

def
= ṁ+

klm − ℓe+ki m
+
ilm −m+

kimℓ
e+
li −m+

kliν
e+
mi + de+ii m

+
klm

= Qka(ṁklm − ℓekimilm −mkimℓ
e
li −mkliν

e
mi + deiimklm)QlbQmc

= Qka

�

mklm QlbQmc (171)

q.e.d.

Now, to map the plastic evolution equations, we start with the macroscale plasticity. The

yield and plastic potential functions in B become

F (σ, c) = Je‖devσ‖e − Je
(
Aφc− Bφp

)
≤ 0 (172)

‖devσ‖e def
=
√

(devσij)be
−1
imb

e−1
jn (devσmn)

devσij = σij −
(

1

3
σkk

)
δij , p =

1

3
σkk

G(σ, c) = Je‖devσ‖e − Je
(
Aψc− Bψp

)
(173)
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where be−1
ij = F e−1

M̄i
F e−1

M̄j
. The map of the plastic velocity gradient and strain-like ISV

become

ℓplk = γ̇
∂G

∂σkl
(174)

∂G

∂σkl
= Je

(
be−1
ka

devσab
‖devσ‖e b

e−1
bl +

1

3
Bψδkl

)

Ż = −γ̇ ∂G
∂c

= Aψγ̇Je (175)

c = HZ (176)

Next, for microscale plasticity, the yield and plastic potential functions in B become

F χ(s − σ, cχ) = Je‖dev(s − σ)‖e − Je
(
Aχ,φcχ − Bχ,φpχ

)
≤ 0 (177)

pχ =
1

3
(skl − σkl)δkl

Gχ(s − σ, cχ) = Je‖dev(s − σ)‖e − Je
(
Aχ,ψcχ −Bχ,ψpχ

)
(178)

The map of the plastic microgyration tensor and strain-like ISV become

νplk = γ̇χ
∂Gχ

∂(skl − σkl)
(179)

∂Gχ

∂(skl − σkl)
= Je

(
be−1
ka

dev(sab − σab)

‖dev(s − σ)‖e b
e−1
bl +

1

3
Bχ,ψδkl

)

Żχ = −γ̇χ∂G
χ

∂cχ
= Aχ,ψγ̇Je (180)

cχ = HχZχ (181)

For microscale gradient plasticity, the yield and plastic potential functions in B become

F∇χ(m, c∇χ) = Je‖devm‖χ − Je
(
A∇χ,φ‖c∇χ‖χ −B∇χ,φ‖p∇χ‖χ

)
≤ 0 (182)

‖c∇χ‖χ def
=

√
c∇χm bχ,e−1

mnc
∇χ
n

‖devm‖χ def
=
√

(devmijk)be
−1
imb

e−1
jn b

χ,e−1
kp (devmmnp)

‖p∇χ‖χ def
=

√
p∇χm bχ,e−1

mnp
∇χ
n , p∇χm =

1

3
mkkm

G∇χ(m, c∇χ) = Je‖devm‖χ − Je
(
A∇χ,ψ‖c∇χ‖χ − B∇χ,ψ‖p∇χ‖χ

)
(183)
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The map of the gradient plastic microgyration tensor and strain-like ISV become

νplm,k = (γ̇∇χ)
∂G∇χ

∂mklm

(184)

∂G∇χ

∂mklm

= Je
(

devmabc

‖devm‖χ b
e−1

kab
e−1

lbb
χ,e−1

mc +
1

3
B∇χ,ψδkl

p∇χa
‖p∇χ‖χ b

χ,e−1
am

)

Żχ
,a = −(γ̇∇χ)

∂G∇χ

∂c∇χa
= A∇χ,ψ(γ̇∇χ)Je

c∇χb
‖c∇χ‖χ b

χ,e−1
ba (185)

c∇χl = H∇χZχ
,ab

χ,e
al (186)

Remark 9. It is reassuring to see that the left hand sides of the plastic deformation

evolution equations 174, 179, 184 simplify considerably in the current configuration from

the forms in the intermediate configuration 133, 139, 144. They are further simplified when

assuming small elastic deformations.

Remark 10. Solving numerically for the increment of νplm,k leads to the solution of the

increment of νelm,k, and, in turn, the evolution of the couple stress mklm over time. We see

this by taking the spatial derivative of the microgyration tensor as

νlm,k = νelm,k + νplm,k (187)

νlm,k =
[
χ̇lKχ

−1
Km

]
,k

νelm,k = γ̇elmk − νelaγ
e
amk + νeamγ

e
lak (188)

Remark 11. With the definition of the plastic evolution equations, plastic deformation

can be calculated, and elastic deformation updated to calculate the stresses. A FE

implementations solve these equations. We take advantage of the small deformation

elasticity, such that elastic deformation in the current configuration, be−1
ij , beij , etc., can be

approximated by the second-order unit tensor δij .

To illustrate the implementation, we apply assumptions for small elastic deformation in the

next section.

Small elastic deformation and Cartesian coordinates for current configuration

B: Assuming small elastic deformation, the tensors be−1
ij , beij , ψ

e
ij , b

χ,e−1
ij ≈ δij and Je ≈ 1,

when multiplied by another variable that is not δij or 1, such as be−1
ka devσabb

e−1
bl ≈ devσkl.

Also, the rate of elastic volumetric deformation is J̇e/Je = deii. With these approximations,

in summary, we have the stress evolution equations in B as
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σ̇kl = −(deii)σkl + ℓekiσil + σkiℓ
e
li + (λ+ τ)(deii)δkl + 2(µ+ σ)dekl

+η(εeii)δkl + κεekl + νεelk (189)

ṡkl − σ̇kl = −(deii)(skl − σkl) + ℓeki(sil − σil) + (ski − σki)ℓ
e
li + κεelk + νεekl (190)

ṁklm = −(deii)mklm + ℓekimilm +mkimℓ
e
li +mkliν

e
mi + cklmnpq

◦
γ
e

npq

cklmnpq = τ1 (δklδnmδqp + δlmδnpδkq) + τ2 (δklδmpδnq + δkmδlqδnp)

+τ3δklδqmδnp + τ4δlmδknδqp + τ5 (δkmδlnδqp + δlmδkpδnq)

+τ6δkmδlpδnq + τ7δknδlpδqm + τ8 (δkpδlqδnm + δkqδlnδmp)

+τ9δknδlqδmp + τ10δkpδlnδqm + τ11δkqδlpδnm (191)

The yield and plastic potential functions in B become

F (σ, c) = ‖devσ‖ −
(
Aφc−Bφp

)
≤ 0 (192)

‖devσ‖ =
√

(devσij)(devσij)

devσij = σij −
(

1

3
σkk

)
δij , p =

1

3
σkk

G(σ, c) = ‖devσ‖ −
(
Aψc− Bψp

)
(193)

The map of the plastic velocity gradient and strain-like ISV become

ℓplk = γ̇
∂G

∂σkl
(194)

∂G

∂σkl
=

devσkl
‖devσ‖ +

1

3
Bψδkl

Ż = −γ̇ ∂G
∂c

= Aψγ̇ (195)

c = HZ (196)

Notice that ℓp = γ̇(∂G/∂σ)T . Next, for microscale plasticity, the yield and plastic potential

functions in B become

F χ(s − σ, cχ) = ‖dev(s − σ)‖ −
(
Aχ,φcχ − Bχ,φpχ

)
≤ 0 (197)

pχ =
1

3
(skk − σkk)

Gχ(s − σ, cχ) = ‖dev(s − σ)‖ −
(
Aχ,ψcχ −Bχ,ψpχ

)
(198)
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The map of the plastic microgyration tensor and strain-like ISV become

νplk = γ̇χ
∂Gχ

∂(skl − σkl)
(199)

∂Gχ

∂(skl − σkl)
=

dev(skl − σkl)

‖dev(s − σ)‖ +
1

3
Bχ,ψδkl

Żχ = −γ̇χ∂G
χ

∂cχ
= Aχ,ψγ̇χ (200)

cχ = HχZχ (201)

For microscale gradient plasticity, the yield and plastic potential functions in B become

F∇χ(m, cc∇χ) = ‖devm‖ −
(
A∇χ,φ‖c∇χ‖ − B∇χ,φ‖p∇χ‖

)
≤ 0 (202)

‖c∇χ‖ =

√
c∇χm c∇χm

‖devm‖ =
√

(devmijk)(devmijk)

devmijk = mijk −
1

3
δijmaak (203)

‖p∇χ‖ =

√
p∇χm p∇χm , p∇χm =

1

3
mkkm

G∇χ(m, c∇χ) = ‖devm‖ −
(
A∇χ,ψ‖c∇χ‖ −B∇χ,ψ‖p∇χ‖

)
(204)

The map of the gradient plastic microgyration tensor and strain-like ISV become

νplm,k = (γ̇∇χ)
∂G∇χ

∂mklm

,
∂G∇χ

∂mklm

=
devmklm

‖devm‖ +
1

3
B∇χ,ψδkl

p∇χm
‖p∇χ‖ (205)

Żχ
,a = −(γ̇∇χ)

∂G∇χ

∂c∇χa
= A∇χ,ψ(γ̇∇χ)

c∇χa
‖c∇χ‖ (206)

c∇χl = H∇χZχ
,l (207)

Solving numerically for the increment of νplm,k leads to the solution of the increment of

νelm,k, and, in turn, the evolution of the couple stress mklm over time. We see this by taking

the spatial derivative of the microgyration tensor as
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νlm,k = νelm,k + νplm,k (208)

νlm,k =
[
χ̇lKχ

−1
Km

]
,k

νelm,k = γ̇elmk − νelaγ
e
amk + νeamγ

e
lak

Boxes 1 and 2 provide summaries of the stress and plastic evolution equations, respectively,

in symbolic form to solve numerically in time. The details of the symbolic equations have

been provided in index notation in this section. The numerical time integration scheme is

presented in section 2.3.4.
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Box 1. Summary of stress evolution equations in the current configuration in symbolic notation.

σ̇ = −(trde)σ + ℓeσ + σℓeT + (λ + τ)(trde)1 + 2(µ + σ)de

+η(trεe)1 + κεe + νεeT (209)

ṡ− σ̇ = −(trde)(s − σ) + ℓe(s− σ) + (s − σ)ℓeT + κεeT + νεe (210)

ṁ = −(trde)m + ℓem + m⊙ ℓeT + mνeT + c
...
◦
γ
e

(211)

Box 2. Summary of plastic evolution equations in the current configuration in symbolic notation.

ℓp = γ̇

(
∂G

∂σ

)T
(212)

∂G

∂σ
=

devσ

‖devσ‖ +
1

3
Bψ1 = r̂

Ż = Aψγ̇ (213)

νp = γ̇χ
(

∂Gχ

∂(s − σ)

)T
(214)

∂Gχ

∂(s − σ)
=

dev(s − σ)

‖dev(s − σ)‖ +
1

3
Bχ,ψ1 = r̂χ

Żχ = Aχ,ψγ̇ (215)

∇νp = (γ̇∇χ)

(
∂G∇χ

∂m

)T
(216)

∂G∇χ

∂m
=

devm

‖devm‖ +
1

3
B∇χ,ψ1 ⊗ p∇χ

‖p∇χ‖ = r̂∇χ

∇Żχ = A∇χ,ψ(γ̇∇χ)
c∇χ

‖c∇χ‖ (217)
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2.5 Numerical Time Integration

The constitutive equations in section 2.3.3 are integrated numerically in time following a

semi-implicit scheme (Moran et al., 1990). We will solve for plastic multiplier increments

∆γ and ∆γχ in a coupled fashion (if yielding is detected at both scales; see Box 9), and

multiplier ∆γ∇χ afterward because it is uncoupled. It is uncoupled because of the

assumption that quadratic terms in equations 110 and 111 were ignored, leading to

uncoupling of the higher order stress m from Cauchy stress σ and microstress s, whereas σ

and s remain coupled (thus coupling γ̇ and γ̇χ).

We assume a deformation-driven time integration scheme within a FE program solving the

isothermal coupled balance of linear momentum and first moment of momentum equations

573 and 574, respectively, such that deformation gradient Fn+1 and microdeformation

tensor χn+1 are given at time tn+1, as well as their increments ∆Fn+1 = Fn+1 − Fn and

∆χn+1 = χn+1 − χn. We assume a time step ∆t = tn+1 − tn. Boxes 3-8 provide summaries

of the semi-implicit time integration of the stress and plastic evolution equations,

respectively, in symbolic form.

To obtain γ̇e in Box 1 through
◦
γ
e

, we use equation 208 such that

∇ν = ∇νe + ∇νp

∇ν = ∇
[
χ̇χ−1

]

∇νe = γ̇e − νeγe + νeT ⊙ γe

=⇒ γ̇e = νeγe − νeT ⊙ γe + ∇ν −∇νp (218)

Recall equation 158 which gives the equation for the objective rate of γe as

◦
γ
e
def
= γ̇e + ℓeTγe + γeℓe + γe ⊙ νe (219)

which appears in equation 211 in Box 1, and in Box 4 for the numerical integration. For

∇(χn+1 − χn) and ∇χn+1 in Box 4, because χ is a nodal DOF in a FE solution and thus

interpolated in a standard fashion, its spatial gradient can be calculated.

Box 9 summarizes the algorithm for solving the plastic multipliers from evaluating the

yield functions at time tn+1. It involves multiple plastic yield checks, such that macro

and/or micro plasticity could be enabled, and/or microgradient plasticity. Because the

macro and micro plasticity yield functions F and F χ, respectively, are decoupled from the

microgradient plastic multiplier γ̇∇χ, we solve first for the micro and macroplastic

55



multipliers, as indicated by (I) in Box 9, and then for the microgradient plastic multiplier

in (II) afterward. Once the plastic multipliers are calculated, the stresses and ISVs can be

updated as indicated in Boxes 5-8.

This micromorphic plasticity model numerical integration scheme fit nicely into a coupled

Lagrangian FEformulation and implementation of the balance of linear momentum and

first moment of momentum. Such work is ongoing.
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Box 3. Summary of semi-implicit time integration of Cauchy stress σ and

microstress-Cauchy-stress difference (s− σ) evolution equations. (•)tr implies the trial value, in

this case the trial stress. Results of the semi-implicit time integration of the plastic evolution

equations in Box 5 are included here.

σn+1 = (1 − tr(∆tden+1))σn + (∆tℓen+1)σn + σn(∆tℓen+1)
T +

(λ + τ)tr(∆tden+1)1 + 2(µ + σ)(∆tden+1) + ηtr(∆tεen+1)1

+κ(∆tεen+1) + ν(∆tεen+1)
T (220)

(s − σ)n+1 = (1 − tr(∆tden+1))(s − σ)n + (∆tℓen+1)(s − σ)n + (s − σ)n(∆tℓen+1)
T +

κ(∆tεen+1)
T + ν(∆tεen+1) (221)

∆tℓen+1 = ∆tℓn+1 − ∆tℓ
p
n+1 (222)

∆tℓn+1 = (∆Fn+1)F
−1
n+1

∆tℓ
p
n+1 = (∆γn+1)(r̂

tr)T , r̂tr =
devσtr

‖devσtr‖ +
1

3
Bψ1

tr(∆tden+1) = tr(∆tℓn+1) − tr(∆tℓ
p
n+1) = tr(∆tℓn+1) − Bψ(∆γn+1)

∆tεen+1 = ∆tνen+1 + ∆tℓeTn+1 (223)

∆tνen+1 = ∆tνn+1 − ∆tν
p
n+1

∆tνn+1 = (∆χn+1)χ
−1
n+1

∆tν
p
n+1 = (∆γ

χ
n+1)(r̂

χ,tr)T , r̂χ,tr =
dev(s − σ)tr

‖dev(s − σ)tr‖ +
1

3
Bχ,ψ1

tr(∆tεen+1) = tr(∆tεn+1) − tr(∆tε
p
n+1) = tr(∆tεn+1) − Bχ,ψ(∆γ

χ
n+1)

tr(∆tεn+1) = tr(∆tνn+1) + tr(∆tℓn+1)
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Box 4. Summary of semi-implicit time integration of higher-order stress m evolution equation.

Results of the semi-implicit time integration of the plastic evolution equations in Box 5 are

included here.

mn+1 = (1 − tr(∆tden+1))mn + (∆tℓen+1)mn + mn ⊙ (∆tℓen+1)
T + mn(∆tνen+1)

T +

c
...(∆t

◦
γ
e

n+1) (224)

∆t
◦
γ
e

n+1 = ∆tγ̇en+1 + (∆tℓen+1)
T γen + γen(∆tℓen+1) + γen ⊙ (∆tνen+1) (225)

∆tγ̇en+1 = (∆tνen+1)γ
e
n − (∆tνen+1)

T ⊙ γen + ∆t∇νn+1 − ∆t∇ν
p
n+1 (226)

∆t∇νn+1 = ∇(χn+1 − χn)χ
−1
n+1 − (χn+1 − χn)χ

−1
n+1(∇χn+1)χ

−1
n+1 (227)

∆t∇ν
p
n+1 = (∆γ

∇χ
n+1)(r̂

∇χ,tr)T (228)

r̂∇χ,tr =
devmtr

‖devmtr‖ +
1

3
B∇χ,ψ1 ⊗ p∇χ,tr

‖p∇χ,tr‖
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Box 5. Summary of semi-implicit time integration of plastic evolution equations in the current

configuration.

∆tℓ
p
n+1 = ∆γn+1

(
∂G

∂σtr

)T
(229)

∂G

∂σtr
=

devσtr

‖devσtr‖ +
1

3
Bψ1 = r̂tr

Zn+1 = Zn + Aψ∆γn+1 (230)

cn+1 = HZn+1 (231)

∆tν
p
n+1 = ∆γ

χ
n+1

(
∂Gχ

∂(s − σ)tr

)T
(232)

∂Gχ

∂(s − σ)tr
=

dev(s − σ)tr

‖dev(s − σ)tr‖ +
1

3
Bχ,ψ1 = r̂χ,tr

Z
χ
n+1 = Zχ

n + Aχ,ψ∆γ
χ
n+1 (233)

c
χ
n+1 = HχZ

χ
n+1 (234)

∆t∇ν
p
n+1 = (∆γ

∇χ
n+1)

(
∂G∇χ

∂mtr

)T
(235)

∂G∇χ

∂mtr
=

devmtr

‖devmtr‖ +
1

3
B∇χ,ψ1 ⊗ p∇χ,tr

‖p∇χ,tr‖ = r̂∇χ,tr

∇Z
χ
n+1 = ∇Zχ

n + A∇χ,ψ(∆γ
∇χ
n+1)

c∇χn

‖c∇χn ‖
(236)

c∇χn+1 = H∇χ∇Z
χ
n+1 (237)
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Box 6. Elastic-predictor-plastic-corrector form of semi-implicit time integration of stress σ

evolution equation in the current configuration.

σn+1 = σtr − (∆γn+1)D
p,tr − (∆γ

χ
n+1)D

χ,p,tr (238)

σtr = (1 − tr(∆tℓn+1))σn + (∆tℓn+1)σn + σn(∆tℓn+1)
T + (λ + τ)tr(∆tℓn+1)1 +

2(µ + σ)sym(∆tℓn+1) + η [tr(∆tνn+1) + tr(∆tℓn+1)] 1

+κ
[
∆tνn+1 + (∆tℓn+1)

T
]
+ ν

[
(∆tνn+1)

T + ∆tℓn+1

]
(239)

Dp,tr = −Bψσn + (r̂tr)Tσn + σnr̂
tr + (λ + τ)Bψ1 + 2(µ + σ)sym(r̂tr) + ηBψ1

+κr̂tr + ν(r̂tr)T (240)

Dχ,p,tr = ηBχ,ψ1 + κ(r̂χ,tr)T + νr̂χ,tr (241)

Box 7. Elastic-predictor-plastic-corrector form of semi-implicit time integration of

microstress-Cauchy-stress difference (s − σ) evolution equation in the current configuration.

(s − σ)n+1 = (s − σ)tr − (∆γn+1)E
p,tr − (∆γ

χ
n+1)E

χ,p,tr (242)

(s − σ)tr = (1 − tr(∆tℓn+1))(s − σ)n + (∆tℓn+1)(s − σ)n + (s− σ)n(∆tℓn+1)
T

+κ
[
(∆tνn+1)

T + ∆tℓn+1

]
+ ν

[
∆tνn+1 + (∆tℓn+1)

T
]

(243)

Ep,tr = −Bψ(s − σ)n + (r̂tr)T (s − σ)n + (s − σ)nr̂
tr + κ(r̂tr)T + νr̂tr (244)

Eχ,p,tr = κr̂χ,tr + ν(r̂χ,tr)T (245)

Box 8. Elastic-predictor-plastic-corrector form of semi-implicit time integration of higher-order

couple stress m evolution equation in the current configuration.

mn+1 = mtr − (∆γn+1)K
p,tr − (∆γ

χ
n+1)K

χ,p,tr − (∆γ
∇χ
n+1)K

∇χ,p,tr (246)

mtr = (1 − tr(∆tℓn+1))mn + (∆tℓn+1)mn + mn ⊙ (∆tℓn+1)
T + mn(∆tνn+1)

T

+c
...
[
(∆tνn+1)γ

e
n − (∆tνn+1)

T ⊙ γen + γen ⊙ (∆tνn+1) + ∆t∇νn+1

+(∆tℓn+1)
Tγen + γen(∆tℓn+1)

]
(247)

Kp,tr = Bψmn + (r̂tr)Tmn + mn ⊙ r̂tr + c
...
[
r̂trγen + γen(r̂

tr)T
]

(248)

Kχ,p,tr = mnr̂
χ,tr + c

...
[
(r̂χ,tr)T γen − r̂χ,tr ⊙ γen + γen ⊙ (r̂χ,tr)T

]
(249)

K∇χ,p,tr = c
...(r̂∇χ,tr)T (250)
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Box 9. Check for plastic yielding and solve for plastic multipliers.

(I) solve for macro and micro plastic multipliers ∆γ and ∆γχ:
Step 1. Compute trial stresses σtr, (s − σ)tr, and trial yield functions F tr, Fχ,tr

Step 2. Consider 3 cases:
(i) If F tr > 0 and Fχ,tr > 0, solve for ∆γn+1 and ∆γ

χ
n+1 using Newton-Raphson for

coupled equations:

F (σn+1, cn+1) = F (∆γn+1,∆γ
χ
n+1) = 0 (251)

Fχ((s − σ)n+1, c
χ
n+1) = Fχ(∆γn+1,∆γ

χ
n+1) = 0 (252)

(ii) If F tr > 0 and Fχ,tr < 0, solve for ∆γn+1 with ∆γ
χ
n+1 = 0 using Newton-Raphson:

F (σn+1, cn+1) = F (∆γn+1,∆γ
χ
n+1 = 0) = 0 (253)

(iii) If F tr < 0 and Fχ,tr > 0, solve for ∆γ
χ
n+1 with ∆γn+1 = 0 using Newton-Raphson:

Fχ((s − σ)n+1, c
χ
n+1) = Fχ(∆γn+1 = 0,∆γ

χ
n+1) = 0 (254)

(II) solve for microgradient plastic multiplier ∆γ∇χ, given ∆γ and ∆γχ:
Step 1. Compute trial stress mtr and trial yield function F∇χ,tr

Step 2. If F∇χ,tr > 0, solve for ∆γ
∇χ
n+1 using Newton-Raphson:

F∇χ(mn+1, c
∇χ
n+1) = F∇χ(∆γ

∇χ
n+1) = 0 (255)
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3. Upscaling from Grain-Scale to Micromorphic Elastoplasticity

In the overlapping domain, the continuum-scale micromorphic solution can be calculated as

a partly homogenized representation of the grain-scale solution (figure 6)¶. This is useful

for fitting micromorphic material parameters, and also in estimating DNS material

parameters when converting from micromorphic continuum FE mesh to DNS in a future

adaptive scheme. Thus, a micromorphic continuum-scale field �
micromorphic is defined as a

weighted average (over volume and area) of the corresponding field �
grain at the

grain-scale, which is written as follows:

�
micromorphic,vol def

=
〈
�

grain
〉
v

def
=

1

vω,avg

∫

Ωavg

ω(r, θ, ϑ)�graindv (256)

�
micromorphic,arean

def
=
〈
�

grainngrain
〉
a

def
=

1

Γavg

∫

Γavg

�
grainngrainda (257)

where 〈•〉v denotes the volume-averaging operator, vω,avg def
=
∫
Ωavg ω(r, θ, ϑ)dv the weighted

average current volume, ω(r, θ, ϑ) denotes the kernel function (if using spherical coordinates

in 3-D averaging), Ωavg is the grain-scale volume averaging domain, 〈•〉a denotes the

area-averaging operator, and Γavg is the grain-scale area averaging domain. These averaging

operators are mapped back to the reference configuration, such that the domains Ωavg
0 and

Γavg
0 are fixed. A length ℓ (approximate diameter of Ωavg and Γavg) is a material property

and is directly related to the length scale used in the micromorphic constitutive model.

A macroelement material point (figures 5 and 6) can be characterized as fully overlapping,

non-overlapping, or partly overlapping according to the level of overlapping between the

averaging domain Ωavg and the full grain-scale DNS region Ωgrain. Within the

fully-overlapping averaging domain, the Cauchy stress tensor σgrain
kl and vector of ISVs qgrain

a

at the grain-scale are projected to the micromorphic continuum-scale using the averaging

operators
〈
�

grain
〉
v

and
〈
�

grain
〉
a

to define the unsymmetric Cauchy stress σkl, the

symmetric microstress skl, and the higher order stress mklm:

σklnk
def
=
〈
σgrain
kl ngrain

k

〉

a
(258)

skl
def
=
〈
σgrain
kl

〉

v
(259)

mklmnk
def
=
〈
σgrain
kl ξmn

grain
k

〉

a
(260)

qa
def
=
〈
qgrain
a

〉
v

(261)

¶Wewould like to acknowledge discussions with his colleague at University of Colorado Boulder (UCB),
Prof. F. Vernerey, regarding the natural built-in homogenization in micromorphic continuum theories of
Eringen (1999); Eringen and Suhubi (1964).
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where it is assumed the variables on the left-hand sides are micromorphic. Kinematic

coupling and energy partitioning determine the percent contribution of grain-scale DNS

and micromorphic continuum FE to the balance equations in the overlapping domain.

Figure 6. Two-dimensional illustration of micromorphic continuum homogenization of
grain-scale response at a FE Gauss integration point X in the overlap region.
vRV E implies a RVE if needed to approximate stress from a DE simulation at
a particular point of integration in Ωavg, for example in Christoffersen et al.
(1981); Rothenburg and Selvadurai (1981).
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4. Coupled Formulation

We consider here the bridging-scale decomposition (Kadowaki and Liu, 2004, Klein and

Zimmerman, 2006, Wagner and Liu, 2003) to provide proper BC constraints on a DNS

region to remove fictitious boundary forces and wave reflections.

4.1 Kinematics

The kinematics of the coupled regions are given, following the illustration shown in figure 2.

It is assumed that the micromorphic continuum-FE mesh covers the domain of the problem

in which the bound particulate mechanics not significantly dominant, whereas in regions of

significant grain-matrix debonding or intra-granular cracking leading to a macro-crack, a

grain-scale mechanics representation is used (grain-FE or grain-DE-FE). Following some of

the same notation presented in Kadowaki and Liu (2004), Wagner and Liu (2003),

grain-FE displacements in the system in the current configuration B are defined as

Q̆ = [qα,qβ, . . . ,qγ]
T , α, β, . . . , γ ∈ Ă (262)

where qα is the displacement vector of grain-FE node α, and Ă is the set of all grain-FE

nodes. The micromorphic continuum-FE nodal displacements da and

microdisplacement-gradients φd (see below for χh = 1 + Φh (Eringen 1968)) are written as

D̆ = [da,db, . . . ,dc, φd, φe, . . . , φf ]
T (263)

a, b, . . . , c ∈ N̆ , d, e, . . . , f ∈ M̆

where da is the displacement vector at node a, φd is the microdisplacement-gradient matrix

at node d, N̆ is the set of all nodes, and M̆ is the set of FE nodes with

microdisplacement-gradient DOFs, where typically M̆ ⊂ N̆ . In order to satisfy the BCs for

both regions, the motion of the grain-FE nodes in the overlap region (referred to as

“ghost” grain-FE nodes, figure 2) is prescribed by the micromorphic continuum

displacement and microdisplacement-gradient fields, and written as Q̂ ∈ Â, while the

unprescribed (or free) grain-FE nodal displacements are Q ∈ A, where Â ∪ A = Ă and

Â ∩ A = ∅. The displacements and microdisplacement-gradients of continuum-FE nodes

overlaying the grain-FE are driven by the grain-FE motion (also through the averaging

shown in figure 6) and written as D̂ ∈ N̂ ,M̂, while the unprescribed (or free) nodal

displacements and microdisplacement-gradients are D ∈ N ,M, where
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In general, the displacement vector of a grain-FE node α can be represented by the FE

interpolation of the continuum macro-displacement field uh and

microdisplacement-gradient field Φh (where χh = 1 + Φh (Eringen, 1968)) evaluated at the

grain-FE node in the reference configuration Xα, such that

uh(Xα, t) =
∑

a∈N̆

Nu
a (Xα)da(t) , Φh(bXα, t) =

∑

b∈M̆

NΦ
b (Xα)φb(t) α ∈ Ă (264)

where Nu
a are the shape functions associated with the continuum displacement field uh,

and NΦ
b the shape functions associated with the continuum microdisplacement-gradient

field Φh. Recall that Nu
a and NΦ

b have compact support and thus are evaluated only for

grain-FE nodes that lie within a micromorphic continuum element containing nodes a and

b in its domain. The displacement of a microelement (figure 3) can be written as

u′(X,Ξ, t) = x′(X,Ξ, t) −X′(X,Ξ)

= x(X, t) + ξ(X,Ξ, t)− X −Ξ

= x(X, t) − X︸ ︷︷ ︸
u(X,t)

+ ξ(X,Ξ, t)︸ ︷︷ ︸
χ(X,t)Ξ

−Ξ

= u(X, t) + [χ(X, t) − 1]︸ ︷︷ ︸
Φ(X,t)

Ξ

= u(X, t) + Φ(X, t)Ξ (265)

where we used the definition χ = 1 + Φ (Eringen, 1968) to put the form of

microdeformation tensor χ similar to the deformation gradient F = 1 + ∂u/∂X. The

prescribed displacement of ghost grain-FE node α can then be written as

qα(t) = (u′)h(Xα,Ξα, t) = uh(Xα, t) + Φh(Xα, t)Ξα α ∈ Â (266)

where Ξα is the relative position of grain-FE node α from a micromorphic continuum

point. The choice of this continuum point could be either a continuum-FE node or Gauss

integration point. This will be investigated in the multiscale implementation. The influence

of the microdisplacement-gradient tensor Φh in the overlap region on the ghost grain-FE

nodal displacement could, through specific micromorphic viscoelastic constitutive relations

for χe, act to “damp out” high-frequency waves propagating through the fine mesh

grain-FE region to the overlap/coupling region. The partitioning of potential and kinetic

energies between grain-FE and micromorphic-continuum-FE systems within the overlap

region will be dependent on the grain-FE equations of the bound particulate system and

the micromorphic continuum-FE equations of the continuum system.
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For all ghost grain-FE nodes, the interpolations can be written as

Q̂ = N bQD · D + N bQ bD · D̂ (267)

where N bQD and N bQ bD are shape function matrices containing individual nodal shape

functions Nu
a and NΦ

b , but for now these matrices are left general to increase our flexibility

in choosing interpolation/projection functions (such as those used in meshfree methods).

Overall, the grain-FE displacements may be written as

[
Q

Q̂

]
=

[
NQD N

Q bD
N bQD N bQ bD

]
·
[

D

D̂

]
+

[
Q′

0

]
(268)

where Q′ is introduced (Klein and Zimmerman, 2006) as the error (or “fine-scale” (Wagner

and Liu, 2003)) in the interpolation of the free grain-FE displacements Q, whose function

space is not rich enough to represent the true free grain-FE nodal motion. The shape

function matrices N are, in general, not square because the number of free grain-FE nodes

are not the same as free micromorphic-FE nodes and prescribed nodes, and number of

ghost grain-FE nodes not the same as prescribed and free micromorphic-FE nodes. A

scalar measure of error in grain-FE nodal displacements is defined as (Klein and

Zimmerman, 2006)

e = Q′ · Q′ (269)

which may be minimized with respect to prescribed continuum micromorphic-FE nodal

DOFs D̂ to solve for D̂ in terms of free grain-FE nodal DOFs and micromorphic

continuum FE nodal DOFs as

D̂ = M−1
bD bDNT

Q bD(Q −NQDD) , M bD bD = NT

Q bDN
Q bD (270)

This is known as the “discretized L2 projection” (Klein and Zimmerman, 2006) of the free

grain-FE nodal motion Q and free micromorphic-FE nodal DOFs D onto the prescribed

micromorphic-FE nodals DOFs D̂. Upon substituting equation 270 into equation 267, we

may write the prescribed grain-FE nodal DOFs Q̂ in terms of free grain-FE nodal Q and

micromorphic-FE nodal D DOFs. In summary, these relations are written as

Q̂ = B bQQQ + B bQDD (271)

D̂ = B bDQQ + B bDDD (272)
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where

B bQQ = N bQ bDB bDQ (273)

B bQD = N bQD + N bQ bDB bDD (274)

B bDQ = M−1
bD bDNT

Q bD (275)

B bDD = −M−1
bD bDNT

Q bDNQD (276)

As shown in figure 2, for a FE implementation of this DOF coupling, we expect that free

grain-FE nodal DOFs Q will not fall within the support of free micromorphic continuum

FE nodal DOFs D, such that it can be assumed that NQD = 0 and

Q̂ = B bQQQ + B bQDD (277)

D̂ = B bDQQ (278)

where

B bQQ = N bQ bDB bDQ (279)

B bQD = N bQD (280)

B bDQ = M−1
bD bDNT

Q bD (281)

B bDD = 0 (282)

The assumption NQD 6= 0 would be valid for a meshfree projection of the grain-FE nodal

motions to the micromorphic-FE nodal DOFs, as in Klein and Zimmerman (2006), where

we could imagine that the domain of influence of the meshfree projection could encompass

a free grain-FE node; the degree of encompassment would be controlled by the chosen

support size of the meshfree kernel function. The choice of meshfree projection in Klein

and Zimmerman (2006) was not necessarily to allow Q be projected to D (and vice versa),

but to remove the computationally costly calculation of the inverse M−1
bD bD in equations 271

and 272. Since we will also be using the TAHOE code for the coupled multiscale

grain-FE-micromorphic-FE implementation, where the meshfree projection has been

implemented for atomistic-continuum coupling (Klein and Zimmerman, 2006), we will also

consider the meshfree projection in the future.

FE Balance Equations:
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Following standard FE methods to formulate the nonlinear dynamic matrix FE equations,

using the DOFs defined in the previous section, the balance of linear momentum for the

grain-scale FE is

MQQ̈ + FINT,Q(Q) = FEXT,Q (283)

where MQ is the mass matrix (lumped or consistent (Hughes, 1987)), FINT,Q(Q) is the

nonlinear internal force vector, and FEXT,Q is the external force vector (which could be a

function of Q, but here such dependence is not shown).

For the balance of linear momentum and balance of first moment of momentum in equation

57, the weak form can be derived following the method of weighted residuals in Hughes

(1987) (details not shown), the Galerkin form expressed, and then the FE matrix equations

written in coupled form as

MDD̈ + FINT,D(D) = FEXT,D (284)

where MD is the mass and microinertia matrix, FINT,D(D) the nonlinear internal force

vector, FEXT,D the external force vector, and D = [dφ]T is the generalized DOF vector for

the coupled micromorphic FE formulation.

These FE equations can be written in energy form to make the partitioning of energy in

the next section more straightforward. For the FE matrix form of balance of linear

momentum at the grain-scale, we have

d

dt

(
∂TQ

∂Q̇

)
− ∂TQ

∂Q
+
∂UQ

∂Q
= FEXT,Q (285)

where TQ is the kinetic energy and UQ the potential energy, such that

TQ =
1

2
Q̇MQQ̇

UQ(Q) =

∫ Q

0

FINT,Q(S)dS

Carrying out the derivatives in equation 285, and using the Second Fundamental Theorem

of Calculus for ∂UQ/∂Q, leads to equation 283. Likewise, for the coupled micromorphic

balance equations, we have the energy form
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d

dt

(
∂TD

∂Ḋ

)
− ∂TD

∂D
+
∂UD

∂D
= FEXT,D (286)

where TD is the kinetic energy and UD is the potential energy, such that

TD =
1

2
ḊMDḊ

UD(D) =

∫ D

0

FINT,D(S)dS

4.2 Partitioning of Energy

We assume the total kinetic and potential energy of the coupled

grain-FE-micromorphic-FE system may be written as the sum of the energies

T (Q̇, Ḋ) = TQ(Q̇,
˙̂
Q(Q̇, Ḋ)) + TD(Ḋ,

˙̂
D(Q̇)) (287)

U(Q,D) = UQ(Q, Q̂(Q,D)) + UD(D, D̂(Q)) (288)

where we have indicated the functional dependence of the prescribed grain-FE nodal DOFs

and micromorphic-FE nodal DOFs solely upon the free grain-FE nodal DOFs and

micromorphic-FE nodal DOFs Q and D, respectively. Lagrange’s equations may then be

stated as

d

dt

(
∂T

∂Q̇

)
− ∂T

∂Q
+
∂U

∂Q
= FEXT,Q

d

dt

(
∂T

∂Ḋ

)
− ∂T

∂D
+
∂U

∂D
= FEXT,D (289)

which lead to a coupled system of governing equations (linear and first moment of mo-

mentum) for the coupled grain-FE-micromorphic-FE mechanics. Details of the derivatives,

partitioning coefficients, and numerical examples will follow in a future report and journal

articles.
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5. Conclusion

5.1 Results

The schematic for a concurrent multiscale computational modeling approach for simulating

dynamic fracture in bound particulate materials was presented that accounts for

grain-scale micro-cracking influences on macroscale fracture. Details of a finite strain

micromorphic pressure-sensitive Drucker-Prager elastoplastic constitutive model were

presented, as well as its semi-implicit numerical integration. The approach for coupling

grain-scale FE equations to the macroscale micromorphic FE equations was presented.

5.2 Conclusions

A three-level (macro, micro, and microgradient) micromorphic pressure-sensitive plasticity

model provides additional flexibility in coupling with grain-scale mechanics in an

overlapping region (figure 1.2) for attempting to account for influences of grain-scale

micro-cracking on macroscale fracture nucleation and propagation under dynamic loading

of bound particulate materials. The thorough formulation of the finite strain micromorphic

elastoplastic constitutive equations in the context of nonlinear micromorphic continuum

mechanics has been established, allowing the multiscale framework to stand on a firm

footing, which heretofore was not presented in the literature.

5.3 Future Work

Future work will involve completing the FE implementation of the finite strain

micromorphic pressure-sensitive Drucker-Prager plasticity model, and coupling it via an

overlapping region to the grain-scale FE mesh where a projectile may impact a bound

particulate materials target (figure 2).
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Appendix A. Derivation of F′

The formulation of equation 5 is presented in this appendix, using direct notation. To

start, we recognize that

F′ =
∂x′

∂X′
=
∂x′

∂X

∂X

∂X′
(A-1)

∂x′

∂X
= F +

∂χ

∂X
Ξ + χ

∂Ξ

∂X
(A-2)

and

∂X

∂X′
= 1 − ∂Ξ

∂X′
(A-3)

It is possible to show that ∂Ξ/∂X′ ≈ ∂Ξ/∂X, starting with

∂Ξ

∂X′
=
∂Ξ

∂X

∂X

∂X′
(A-4)

which using equation A-3 leads to

∂Ξ

∂X′
=

(
1 +

∂Ξ

∂X

)−1
∂Ξ

∂X
(A-5)

Assuming the gradient of microstructural internal length is small, ‖∂Ξ/∂X‖ ≪ 1 for the

region of interest where the micromorphic continuum model is used, then

(
1 +

∂Ξ

∂X

)−1

≈ 1 − ∂Ξ

∂X
(A-6)

where then

∂Ξ

∂X′
=

(
1 − ∂Ξ

∂X

)
∂Ξ

∂X
≈ ∂Ξ

∂X
(A-7)

The expression for F′ then results as in equation 5.
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Appendix B. Another Set of Elastic Deformation Measures

Here, another set of elastic deformation measures, from equation 1.5.11 in (Eringen, 1999),

are considered as

C̄χ,e

K̄L̄
= χekK̄χ

e
kL̄ , Ῡe

K̄L̄ = χe−1
L̄a
F e
aK̄ , Π̄e

K̄L̄M̄ = χe−1
K̄a
χeaL̄,M̄ (B-1)

Thus, the Helmholtz free energy function is written as

ρ̄ψ̄(C̄χ,e

K̄L̄
, Ῡe

K̄L̄, Π̄
e
K̄L̄M̄ , Z̄K̄ , Z̄

χ

K̄
, Z̄χ

K̄,L̄
, θ) (B-2)

and the constitutive equations for stress result from equations 82 - 84 as

S̄K̄L̄ =
∂(ρ̄ψ̄)

∂Ῡe
K̄B̄

χe−1
B̄k
F e−1

L̄k
(B-3)

Σ̄K̄L̄ = 2Ῡe−1
ĀK̄

∂(ρ̄ψ̄)

∂C̄χ,e

ĀB̄

Ῡe−1
B̄L̄

(B-4)

M̄K̄L̄M̄ =
∂(ρ̄ψ̄)

∂Π̄e
ĪM̄K̄

χe−1
ĪkF

e−1
L̄k (B-5)

where Ῡe−1
ĀK̄

= F e−1
K̄kχ

e
kĀ

. These stress equations take a somewhat simpler form than in

equations 91 - 93. Thus, it becomes a choice of the modeler how the specific constitutive

form of the elastic part of the Helmholtz free energy function is written, i.e. in terms of

equation 90 or equation B-2. Eringen (1999) advocated the use of equation B-2 for

micromorphic elasticity, whereas Suhubi and Eringen (1964) used equation 90. We use

equation 90.
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Appendix C. Deformation Measures

It was mentioned that the change in the square of microelement arc-lengths (ds′)2 − (dS̄ ′)2

should include only three unique elastic deformation measures (the two sets proposed by

Eringen (1999) and considered in this report for finite strain elastoplasticity). Here, we

write directly

(ds′)2 = dx′dx′ = dx′kdx
′
k (C-1)

where

dx′k = F e
kK̄dX̄K̄ + χekK̄,L̄Ξ̄K̄dX̄L̄ + χekK̄χ

p

K̄K,L̄
ΞKdX̄L̄ + χekK̄dΞ̄K̄ (C-2)

Then

(ds′)2 =
[
C̄e
K̄L̄ + 2sym(Γ̄eK̄B̄L̄)Ξ̄B̄ + Γ̄eD̄ĀK̄C̄

e−1
D̄M̄

Γ̄eM̄B̄L̄Ξ̄ĀΞ̄B̄

+2sym(Ψ̄e
B̄ĒC̄

e−1
B̄C̄

Γ̄eC̄ĀK̄χ
p

ĒE,L̄
)Ξ̄ĀΞE

+Ψ̄e
ĀD̄C̄

e−1
ĀB̄

Ψ̄e
B̄Ē χ

p

D̄D,K̄
χp
ĒE,L̄

ΞDΞE

+2sym(Ψ̄e
K̄Ēχ

p

ĒE,L̄
)ΞE

]
dX̄K̄dX̄L̄

+2
[
Ψ̄e
K̄L̄ + Ψ̄e

B̄L̄C̄
e−1
B̄C̄

Γ̄eC̄ĀK̄Ξ̄Ā

+Ψ̄e
ĀL̄C̄

e−1
ĀB̄

Ψ̄e
B̄D̄ χ

p

D̄D,K̄
ΞD

]
dX̄K̄dΞ̄L̄

+
[
Ψ̄e
ĀK̄C̄

e−1
ĀB̄

Ψ̄e
B̄L̄

]
dΞ̄K̄dΞ̄L̄ (C-3)

and

(dS̄ ′)2 = dX̄K̄dX̄K̄ + 2dX̄K̄dΞ̄K̄ + dΞ̄K̄dΞ̄K̄ (C-4)

It can be seen that the first set in equation 89 appears exclusively as elastic deformation in

equation C-3; there are also some plastic terms, which do not appear in equation 1.5.8 in

Eringen (1999). Equation C-3 could likewise be expressed in terms of the elastic set in

equation B-1. But one or the other set is unique, as outlined by Eringen (1999) for

micromorphic elasticity, here put into context for finite strain micromorphic elastoplasticity.
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